University of Nevada, Reno

Igneous Geology of the Keystone Window, Simpson Park Mountains, Eureka County, Nevada: Age, Distribution, Composition, and Relationship to Carlin-style Gold Mineralization

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in

Geology

by

Gabriel E. Aliaga

Dr. Michael W. Ressel/Thesis Advisor

December 2018

THE GRADUATE SCHOOL

We recommend that the thesis prepared under our supervision by

GABRIEL E. ALIAGA

Entitled

Igneous Geology Of The Keystone Window, Simpson Park Mountains, Eureka County, Nevada: Age, Distribution, Composition, And Relationship To Carlin-Style Gold Mineralization

be accepted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Michael W. Ressel, Ph.D., Advisor

Philipp Ruprecht, Ph.D., Committee Member

Dhanesh Chandra, Ph.D., Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

December, 2018

Abstract

Keystone is an early-stage gold exploration project operated by U.S. Gold Corp. located in the northern Simpson Park Mountains, in the Battle Mountain-Eureka mineral belt of north-central Nevada. Dating of ore-stage minerals and cross-cutting relationships between mineralization and dikes elsewhere in Nevada shows that most Carlin-type gold deposits (CTDs) formed over a short interval in the Eocene (~42-35 Ma), coeval with a distinct pulse of arc magmatism that supplied heat and permissively, metals for CTDs. The on-trend location of Keystone, 25 km south of the giant Cortez Hills and Goldrush CTDs, together with widespread alteration of a domed lower plate structural window in the Roberts Mountains allochthon (RMA) that is cored by an Eocene intermediate pluton, make it ideal for the study of proximal to distal styles of Eocene mineralization, including CTDs. U-Pb zircon and ⁴⁰Ar/³⁹Ar dating in conjunction with mapping of igneous rocks and alteration provide constraints on the timing and style of magmatism and mineralization.

A major normal fault along Keystone's west flank tilted units moderately east, exposing a 2 km thick crustal section that includes Eocene volcanic rocks, the RMA, lower plate carbonates, and abundant intrusions. Eocene igneous rocks comprise the 4.1 km² intermediate composite Walti pluton, which domed surrounding wall rocks, and abundant porphyritic, intermediate to silicic stocks, dikes, lavas, and tuffs. All Eocene rocks are shoshonitic to high-K calc-alkaline, metaluminous to weakly peraluminous, and were emplaced from ~36-34.5 Ma. A ~25 km² magnetic anomaly coincides with the Walti pluton and indicates much larger intrusions at depth. The anomaly is of similar size to the magnetic anomaly associated with the Eocene Bullion intrusion (22 km²) in the southern Carlin trend and the Copper Canyon stock (11 km²), which is associated with the Phoenix-Fortitude gold skarns. Trace-element geochemistry, petrography, crosscutting relations, and isotopic dating of Eocene igneous rocks at Keystone support a complex magmatic evolution with likely varied sources. Older andesite of McClusky Creek, Mud Springs diorite and Gund diorite are interpreted as a separate magmatic system from the later Walti granodiorite to diorite intrusion and its related rocks.

The composition and timing of igneous rocks at Keystone are consistent with the last stages of mid-Cenozoic, dominantly intermediate composition magmatism in northeast Nevada, which was active

from ~44 to 34 Ma and migrated rapidly southwestward. This Eocene magmatism was characterized by shallow intrusion and mostly effusive volcanism. After ~34 Ma and generally at or immediately south of Keystone, magmatism became dominantly silicic and pyroclastic, part of the Oligocene ignimbrite flare-up of central Nevada (e.g. the nearby ~34 Ma Caetano and Hall Creek calderas). The change in style and composition of mid-Cenozoic magmatism at this latitude coincides with a change in the distribution of Eocene Carlin-type gold deposits from major deposits (+5 Moz contained Au) to the north, to relatively smaller deposits to the south. Whether the change in the magnitude of Carlin-type gold mineralization is directly or indirectly related to changes in mid-Cenozoic magmatism is uncertain and an area of future research.

⁴⁰Ar^{/39}Ar dating of biotite from an alkaline basalt in the Valmy Formation yielded a plateau age of 466.1±0.7 Ma, which is Middle Ordovician. This age is consistent with biostratigraphic ages from conodonts and radiolaria at Keystone. Alkaline mafic rocks at Keystone solely occur in the Ordovician Valmy and Cambrian-Ordovician Comus formations as sills, volcanogenic debris flows, and pillows, typically intercalated with limestone. These rocks, in addition to unusual mineralogy, have distinctive and unusually high concentrations of both compatible and incompatible trace elements consistent with ocean island basalts (OIB) and unlike depleted mid-ocean ridge basalts (MORB) or arc-related basalts. OIBs likely reflect intraplate or hotspot-related magmatism that developed as a series of seamounts during deposition of rocks of the Valmy and Comus formations and which were later tectonically transported eastward to the Keystone area during Late Devonian/Early Mississippian Antler thrusting. The age, lithologic, and geochemical similarities of these rocks to the Comus Formation in the Osgood Mountains is permissive for their correlation and is particularly important, since the Comus is the principal host unit in the Getchell trend Carlin-type gold deposits.

U-Pb zircon dating of conglomerate resting on Paleozoic rocks of the RMA yielded a maximum depositional age of 35.62±0.32 Ma. Conglomeratic rocks elsewhere are commonly correlated with the Paleozoic Antler overlap sequence based on the abundance of RMA-derived chert and quartzite clasts. The recognition of this Eocene conglomerate is important not only for regional mapping but also for understanding the development of Eocene basins, some of which are hydrocarbon-bearing, and for

characterizing the switch from late Cretaceous Sevier contraction to an early Cenozoic extensional regime. The basal Eocene conglomerate is the oldest exposed Cenozoic unit at Keystone and is used to constrain the Eocene paleosurface and estimate the depth that Eocene intrusions were emplaced and that mineralization occurred.

Hydrothermal activity at Keystone was constrained by field relations and ⁴⁰Ar/³⁹Ar of illite in altered igneous rocks. The Walti pluton is associated with proximal Pb-Zn-Cu skarn, at the site of the historic Keystone mine. Distal epithermal and Carlin-style mineralization occurs outboard of hornfels halos in overlying and adjacent strata. Drilling by U.S. Gold Corp. commonly intercepted mineralized breccia and jasperoid at the Paleozoic upper- to lower-plate transition, and argillized dikes adjacent to decarbonatized Paleozoic lower-plate carbonate rocks, both of which contain strongly anomalous gold and high concentrations of As, Sb, Hg, Bi, W, Se, and/or Tl. Illite from two samples of altered andesite dikes of McClusky Creek did not yield ⁴⁰Ar/³⁹Ar plateaus but nonetheless produced geologically reasonable weighted mean ages of 35.71 ± 0.12 Ma and 35.54 ± 0.06 Ma, which are slightly younger than the ~35.99 to 35.85 Ma 40 Ar/ 39 Ar igneous hornblende ages. Thus, the illite ages from the altered and esite dikes are considered the best approximate for the age of Carlin-type gold mineralization in the northeastern area of Keystone. A rhyolite porphyry intrusion exhibited the most sericitic and argillic alteration after the altered dikes, and 40 Ar/ 39 Ar dating of sanidine from the unaltered core of the rhyolite yielded an age of 35.43±0.06 Ma. This rhyolite porphyry is possibly the youngest intrusion at Keystone, and is preferentially altered over adjacent intrusions. This suggests the rhyolite intruded an extensional structure that also controlled hydrothermal fluids. Abundant quartz porphyry rhyolite dikes at the nearby Cortez Hills CTD have been interpreted as syn-mineralization because they are altered and locally mineralized; these pre-Caetano caldera dikes are of similar age and composition to the rhyolite porphyry at Keystone.

Acknowledgements

I would first like to sincerely thank Dr. Mike Ressel who gave me my shot at changing careers. I was living and working in Chicago, IL, heading down a path of clinical laboratory management and FDA regulation. I knew in my heart I wanted to instead be a geologist, to be outdoors, to study the Earth, to make maps! I chose economic geology so I could learn applicable skills and contribute to an exciting industry. I'm happy and grateful that Mike chose me. Thank you for your guidance, patience, and your trust.

I thank my committee members Dr. Philipp Ruprecht and Dr. Dhanesh Chandra for their incredible patience and willingness to meet during their summers. This project was a bit of a scramble to get started and I am appreciative of your time.

Several thanks to the people who helped with the extensive geochronology this thesis required. Chris Henry and Dr. Matt Heizler, for your time and assistance with my ⁴⁰Ar/³⁹Ar mineral separation, analysis, and interpretation. It was a pleasure to visit New Mexico Tech and I am grateful for the invitation, Chris. Dr. Stacia Gordon, who saved me from nearly panicking when the bureau's lab needed maintenance. Thank you for generously offering your zircon separation lab and your time. And thanks to the scientists at University of Arizona's Laserchron Center. I did not know a lab visit could be that streamlined and huxurious, and I have always recommended it to others thereafter.

I am incredibly grateful to Dave Mathewson and U.S. Gold Corp., who have provided financial support and data for this thesis. Many thanks to Dave and the rest of the geologists, Tom Chapin, Brion Theriault, Ken Coleman, and Neil Whitmer, who demonstrated the excitement of exploration. Tom Chapin was a phenomenal mentor and I really wish I could have spent more days with you in the field to learn from your expertise.

Thank you, Dr. John Muntean and students of the CREG program, for always making me feel welcome even though I wasn't technically "one of you"! Moving into the CREG office no doubt saved me from becoming a hermit as I finished my thesis. It has been a blast being part of SEG and seeing Finland and Japan with you guys, and I look forward to working with you all in the future. Thank you, Heather

Winslow and Michelle Dunn for your friendship since the first day I came to Reno and for loving my dog Terra! Special thanks to Elizabeth Hollingsworth for being an awesome officemate, an incredibly knowledgeable scientist who always answered my questions, and a great friend.

I thank my family for their love and support. It wasn't that long ago when I doubted applying to school and my sister Yana *yelled* at me to just go for it and how of course I'll succeed, and I thank her for the encouragement. Thank you, mom, for letting me follow my dreams. Thank you, Naseem, for loving me, marrying me, and following me all the way to Nevada so I could look at rocks. It is a change neither of us expected, and I can't wait for the many more surprises the future holds for us. You are the best and you are my favorite person.

Table of Contents

Abstract	i
Acknowledgements	iv
List of Tables	vii
List of Figures	viii
List of Plates	X
Introduction	1
Methods	
Local Geology	
Paleo zoic allochthonous rocks of the basin domain	
Paleo zoic autochthonous rocks of the slope domain	
Cenozoic rocks	
Intrusive rocks	-
Volcanic rocks	
Quaternary units	
Geochemistry	64
Major e le ments	64
Trace and immobile elements	72
Basalts	
Rare earth elements	
Geochronology	
U-Pb zircon results	
$^{40}\text{Ar}/^{39}\text{Ar}$ results	
Discussion	
Timeline of igneous activity at Keystone	
Summary	
Relationship of Eocene mag matism at Keystone to regional mag matism	
Hydrothermal activity and distribution at Keystone	
Structures and depth of emplacement	
Eocene conglomerate – its recognition and significance	
OIB volcan ism and correlation with the Comus Formation	
Conclusions	
References	
Appendix A – Geochemistry	
Appendix B – U-Pb Zircon Results	
Appendix C – 40 Ar/ 39 Ar Results	

List of Tables

Table 1. Summary of conodont and radiolaria fossil ages from limestone and chert strata	15
Table 2. Summary of igneous textures and mineral assemblages	
Table 3. Representative geochemical analyses of igneous units	
Table 4. Summary of isotopic dating results	
Table 5. Summary of hydrothermal alteration	

List of Figures

Figure 1. Locations of Carlin-type gold deposits and age of mineralization and associated magmatism.	6
Figure 2. Location of Keystone project study area with marked nearby gold deposits and districts	9
Figure 3. Locations of conodont and radiolaria samples	14
Figure 4. Photo of chaotically folded chert beds of the Valmy Formation	20
Figure 5. Ob lique 3D view of basalts of the Valmy	
Figure 6. Representative micrographs and photographs of basalts of the Valmy.	
Figure 7. Representative micrographs of basalts of the Valmy	
Figure 8. Photo of collapsed shaft of the Keystone mine and skarn mineralization	
Figure 9. Photo and SEM image of sample KS035 of skarn mineralization	
Figure 10. Viewing south towards the Walti pluton's southwest contact with the Wenban Formation	
Figure 11. Photograph of outcrop of Tertiary conglomerate	
Figure 12. Representative micrographs and photographs of Eocene intrusive units	
Figure 13. Representative micrographs and photographs of intrusive units of the Walti	
Figure 14. Anorthite compositions of plagioclase phenocrysts	
Figure 15. Micrographs of the Mud Springs diorite.	37
Figure 16. Photos of outcrops of the Mud Springs gegmatite	
Figure 17. Micrograph of the Mud Springs pegmatite	
Figure 18. Labeled photograph of the Keystone window viewing southeast towards the Gund diorite	
Figure 19. Photograph of cataclasized and sheared chert and siltstone	
Figure 20. Micrographs of the Gund diorite	
Figure 20. Wherographis of the Gund diorite	
Figure 21. Flotographs of the Walti quartz monzonite showing change in texture with depth	45 11
Figure 22. Micrographs of the Walti quartz monzonite	
Figure 23. Micrographs of the wall quartz mon zonite	
Figure 25. Photograph of hydrothermally altered and bleached Walti quartz monzonite	
Figure 26. Photograph of mingled contact between the Walti diorite and Walti quartz monzonite	
Figure 27. Photograph of Walti diorite occurring as a hand-sized enclave	
Figure 28. Photograph of the Walti diorite with pink orthoclase megacrysts	
Figure 29. Micrographs of the Walti diorite	
Figure 30. Micrographs of the Walti intermediate porphyritic dikes	
Figure 31. Micrograph of the rhyolite porphyry	
Figure 32. Photograph of rhyolite porphyry samples comparing alteration	
Figure 33. Micrograph of the trachyandesite dikes	
Figure 34. Representative micrographs and photographs of volcanic units	
Figure 35. Photograph of aphyric rhyolite outcrop with flow banding	
Figure 36. Micrograph of the aphyric rhyolite	
Figure 37. Micrographs of the andesite of McClusky Creek	
Figure 38. Micrograph of the dacite agglomerate	
Figure 39. K ₂ O vs SiO ₂ plot	
Figure 40. Total alkalis-silica diagram	
Figure 41. Molar Cao/(Na ₂ OK ₂ O+Cao) vs. Al ₂ O ₃ /(Na ₂ O+K ₂ O+CaO)	
Figure 42. Major elements vs. SiO ₂	
Figure 43. Total alkali-silica diagram of Walti pluton samples only	
Figure 44. Select major and trace elements vs. TiO2	
Figure 45. Plot of Nb/Zr vs SiO ₂	
Figure 46. Zr/Ti vs. Nb/Yp lot	
Figure 47. Th/Yb vs. Nb/Yb plot	
Figure 48. Chondrite normalized rare earth element spider plot	
Figure 49. LA-ICP-MS results of zircon analyses	85
Figure 50. Weighted mean ²⁰⁶ Pb/ ²³⁸ U ages measured by LA-ICP-MS	
Figure 51. Distribution of detrital zircon analyses from basal conglomerate sample	87

Figure 52. U-Pb detrital zircon analyses of the youngest population cluster of basal conglomerate	
Figure 53. ⁴⁰ Ar/ ³⁹ Ar single crystal step-heating spectra of plagioclase from Sample KS003 from the Mu	
Springs diorite	90
Figure 54. Micrographs of representative plagioclase, sanidine, and orthoclase of samples selected for Ar ⁴⁰ /Ar ³⁹ analysis	91
Figure 55. ⁴⁰ År/ ³⁹ Ar bulk grain step-heating spectra of hornblende samples	
Figure 56. Micrographs of representative hornblende and biotite of samples selected for Ar^{40}/Ar^{39} analy	
Figure 57. ⁴⁰ Ar/ ³⁹ Ar step-heating spectrum and isochron of biotite from sample KS137 from the Walti	
quartz monzonite	
Figure 58. ⁴⁰ Ar/ ³⁹ Ar single crystal step-heating spectra of plagioclase from sample KS041 from the Wal	
diorite Figure 59. ⁴⁰ Ar/ ³⁹ Ar single crystal step-heating spectra and total fusion results of plagioclase from samp	
KS068 from the Walti d iorite	
Figure 60. ⁴⁰ Ar/ ³⁹ Ar single crystal step-heating spectra of plagioclase from sample KS086 from the Wal	
diorite	
Figure 61. ⁴⁰ Ar/ ³⁹ Ar single crystal step-heating spectra of plagioclase from sample KS093 from the Wal	
diorite	
Figure 62. ⁴⁰ Ar/ ³⁹ Ar single crystal total fusion results of sanidine from sample KS098 from the rhyolite	
porphyry	
Figure 63. ⁴⁰ Ar/ ³⁹ Ar single crystal step-heating spectra of plagioclase from sample KS063 from basalt o	of
the Valmy Formation	. 103
Figure 64. ⁴⁰ Ar/ ³⁹ Ar bulk grain step-heating spectrum of biotite from sample KS143 from basalt of the	
Valmy formation	. 103
Figure 65. ⁴⁰ Ar/ ³⁹ Ar step-heating spectra of hydrothermal illite samples	. 105
Figure 66. Micrographs of representative illite of samples selected for Ar ⁴⁰ /Ar ³⁹ analysis	. 106
Figure 67. Summary of geochronology, including U-Pb zircon and ⁴⁰ Ar/ ³⁹ Ar ages	
Figure 68. Schematic cartoon of the formation of a granitoid pluton and its cogenetic dioritic enclaves	. 115
Figure 69. Aeromagnetic survey of the Keystone project	.116
Figure 70. Regional map of Eocene through Miocene calderas of Nevada and Utah	. 119
Figure 71. Simplified geologic map of Jurassic and Eocene igneous rocks in the region surroundi	
Keystone	
Figure 72. Schematic cross section of rocks at Keystone in the Eocene	. 127

List of Plates

Plate 1. Geologic Map of the Keystone Project, Cortez Trend, Eureka Co., Nevada

Introduction

Carlin-type gold deposits of Nevada

Gold constituted 84% of Nevada's mineral and energy production in 2016, with 5.47 million ounces (Moz) produced in that year amounting to \$6.84 billion (Muntean et al., 2017). In 2014, Nevada alone accounted for 5.5% of world production of gold. Much of this gold is produced from sediment-hosted gold deposits known as Carlin-type gold deposits (CTD). Several >5 Moz Au CTDs occur in linear trends in Nevada, and collectively CTDs are estimated to have pre-mining reserves of over 200 Moz Au (Cline et al., 2005; Sillitoe, 2010). The Carlin trend of northern Nevada alone accounts for 1.5% of all the gold ever mined in the world. CTDs are sought by major mining companies for their large endowments and for the size and shape of orebodies that make bulk-mining methods feasible. Extensive research into CTDs since the Carlin deposit discovery in 1961 have clarified their depositional controls, hydrothermal processes, and age. However, a widely accepted genetic model explaining the source of heat, fluids, and metals, has yet to emerge.

Unoxidized Carlin-type gold ore is characterized by disseminated Au-bearing pyrite, arsenian pyrite, and/or arsenopyrite, typically in carbonate or partly calcareous host rocks. Ore-stage hydrothermal fluids were acidic and relatively low temperature (180-240°C), low salinity (≤ 6 wt% NaCl equiv), and weakly CO₂- and H₂S-bearing (Bakken, 1990; Kuehn and Rose, 1992; Cline and Hofstra, 2000). Fluids decarbonatized carbonate host rocks, commonly intense enough to produce collapse breccias, and argillize igneous rocks where encountered. The distribution of alteration commonly follows structures and zones of inherent permeability such as bedding, but decarbonatization of host carbonate rocks by fluids significantly enhanced porosity and permeability, producing orebodies with a variety of asymmetrical shapes and sizes. Where argillized, wall rocks contain assemblages of kaolinite, dickite, and/or illite. Silicification accompanied other late-stage alteration and commonly converted decarbonatized carbonate rocks to jasperoid. Deposition of Au was likely by sulfidation of Fe in the host rocks: Au-sulfide complexes in the fluid were destabilized as sulfur reacted with Fe²⁺ to form pyrite, resulting in incorporation of Au and other trace metals in the pyrite as micrometer-size grains or as rims on pre-existing pyrite. These trace metals and

semi-metals include As, Hg, Cu, Sb, Tl, and Te (Longo et al., 2009b). CTDs often have orpiment, realgar, and stibnite as late-stage minerals, which contain little to no Au.

One important aspect of CTD genesis is the widely agreed age of these deposits. Most or all CTDs in Nevada formed during the Eocene, from 42 to 34 Ma (Groff et al., 1997; Hofstra et al., 1999; Hall et al., 2000; Tretbar et al., 2000; Ressel et al., 2000a, b; Hollingsworth et al., 2017). Research has yet to definitively show what caused the regional hydrothermal events, although hydrothermal activity was coincident in time and space with a southwestward sweep of magmatism through Nevada immediately prior to the ignimbrite flareup of southwestern North America (Henry and Ressel, 2000). Despite the conspicuous timing of mineralization, many important structural controls on the distribution, style, and grade of CTDs were established in the Paleozoic and Mesozoic (e.g., Teal and Jackson, 1997; Rhys et al., 2015).

Nevada Geology - Paleozoic

The oldest widely exposed rocks of north-central Nevada are marine sedimentary rocks that were deposited along the western passive margin of Laurentia, beginning in the Late Proterozoic after the rifting of Rodinia (Dickinson, 2006; Cook, 2015). Shales and sandstones were initially deposited across Utah and Nevada until the middle Cambrian, when carbonate depositional environments were established. In Nevada, the broad Paleozoic depositional environments or domains are the continental shelf, slope, and basin (Crafford, 2008). The shallow water carbonate shelf and reef deposits of eastern Nevada transition to silty and muddy carbonate slope deposits and debris flows of north-central Nevada, and are historically termed the eastern assemblage. Siliceous and siliciclastic deposits of the deep ocean basin distal to the continental margin are termed the western assemblage. These styles of deposition continued through the Late Devonian with intermittent sea level rise and fall (Cook and Corboy, 2004), which resulted in E-W oscillation of major facies through the middle Paleozoic.

In the Late Devonian to Early Mississippian, passive margin carbonate deposition was interrupted by the Antler orogeny (Roberts et al., 1958; Crafford, 2008). The Antler orogenic highlands, originally described in the Roberts Mountains (Roberts et al., 1958), stretched north-south, approximately coincident with the slope-basin interface. Chert and other siliceous, primarily Paleozoic basinal sedimentary rocks including shale to sandstone were eroded and redeposited in basins to the east and west of the highlands during the Mississippian and Pennsylvanian. Thin-skinned Antler thrusting is interpreted to have formed the Antler orogenic highlands, originally described in the Roberts Mountains (Roberts et al., 1958). Many locations in north-central Nevada expose Late Devonian slope-facies rocks (herein termed lower plate) structurally beneath Cambrian through late Devonian basinal- and lesser slope-facies rocks, the latter comprising the Roberts Mountains allochthon (herein termed the RMA, or also the "upper plate"; Ketner, 2013). The RMA stratigraphy is relatively complex due to imbricated thrust sheets containing deformed rocks, varied sources of sediments including the western continental margin rifted from Rodinia and locally, the Comus carbonate-basalt sequence (Cook, 2015; Linde et al., 2017)

By Late Mississippian to Permian, the passive margin architecture was partly reestablished and short-lived shelf deposition resumed in eastern Nevada. However, investigations have shown that some Antler eastward thrusting continued into the late Pennsylvanian and even early Permian (Trexler et al., 2004; Arney, 2013; Holm-Denoma et al., 2017), although others (e.g. Ketner and Alpha, 1992) counter that some of this deformation postdates Triassic rocks. The manner of Antler thrusting and origin of the RMA are still debated, and new mapping and geochronology permit alternate tectonic models (Linde et al., 2016; Linde et al., 2017).

Carbonate slope-facies rocks commonly host major Carlin-type deposits (Cline et al., 2005 and references therein). Rocks are typically thin- to medium-bedded, carbonaceous, pyritic, silty limestone and limestone breccia or conglomerate, which have high initial porosity. These host rocks are commonly interpreted to have resulted from gravity-driven flow from the slope topography, i.e., turbidite flow. Rheologic and hydrologic contrasts between these lower-plate slope-facies carbonates and overlying tectonically emplaced, upper-plate siliciclastic rocks as well as overprinting Mesozoic folds and thrusts, are important controls for Carlin-type gold deposits (Rhys et al., 2015). The tops of most giant Carlin-type deposits lie within about 100 m vertically of major thrust faults most commonly interpreted as Antler faults. Siliceous allochthonous rocks that overlie host carbonates may have formed a non-reactive, much less

permeable layer that impeded upward flow of hydrothermal fluids, thus promoting mineralization in the underlying carbonates (Cline et al., 2005 and references therein).

Nevada Geology - Eocene

Subduction of the Farallon plate beneath the North America plate is widely thought to be responsible for Jurassic to Cretaceous arc magmatism over a broad area of the Cordillera, including the Great Basin and the Sierra Nevada batholith. Post-Sierra Nevada batholith crustal shortening associated with flat-slab subduction in the late Cretaceous to Paleocene likely contributed to thrusting far inboard of the continental margin during the Sevier orogeny (Dickinson, 2006), the low-angle of subduction eventually shutting off arc magmatism entirely from about 80 to 44 Ma at the latitude of the Great Basin. By the Eocene, the Farallon slab, perhaps cooler and less buoyant, may have started to sink, in the process removing or delaminating lithospheric mantle from the crust (Humphreys, 1995). Delamination and slab roll back is thought to have resulted in widespread and voluminous potassium-rich arc-type magmatism in the Eocene as the Farallon slab began to steepen to the southwest (Humphreys, 1995). Magmatism started in southern British Columbia around 55 Ma, rapidly migrated into eastern Washington, Idaho, and western Montana from about 53-43 Ma, then reached northernmost Nevada and Utah by about 44 Ma (Christiansen and Yeats, 1992; Henry, 2008). Curiously, the wave of Eocene magmatism was broadly coeval with a tectonic change from compression to extension that occurred in the Paleogene in northern Nevada. This tectonic transition approximately coincided with the start of metamorphic core complex exhumation and with lacustrine deposition of the Eocene Elko Formation and similar units, which were deposited in paleovalleys and small basins (Henry 2008; Cassel et al., 2014; Smith et al., 2017). Eventually, voluminous arc magmatism at~44 Ma in the north and ~38 Ma at the latitude of Carlin, Nevada, inundated early sedimentary basins with volcanic and volcaniclastic rocks. Abundant calc-alkalic, mostly intermediate lavas and domes and associated plutons and batholiths, and a few ash-flow-forming rhyolitic calderas formed in northern Nevada from 42 to 34 Ma, over the same time and space that CTDs formed (Figure 1; Henry and Ressel, 2001; Ressel and Henry, 2006). Magmatism continued to track southward into central Nevada. By 34 or 33 Ma, magmatism became dominantly silicic and pyroclastic, thus defining the major pulse of caldera volcanism in the Great Basin and other regions of southwest North America called the

ignimbrite flare-up, which lasted until ~19 Ma and migrated from central Nevada to west-central and southwest Nevada. (Henry and John, 2013).

The relationship between giant Carlin-type gold deposits and arc magmatism, mid-Cenozoic extension, and lacustrine basin development is uncertain, although there is a curious temporal and spatial tie between all processes. Altered Eocene felsic dikes are encountered in many CTDs and have been used to constrain the timing of both magmatism, and alteration and gold mineralization of CTDs (Ressel and Henry, 2006). Although larger Eocene intrusions such as stocks do not occur within major CTDs, mapping of spatially related Eocene igneous centers and aeromagnetic data support the existence of large composite plutons or batholiths at greater modern depths between ~3 and 10 km. Eocene intrusions have been cited as potential sources of doming and related structures that controlled hydrothermal fluids (Mathewson, 2001). The 33.9 Ma Caetano tuff, adjacent to the Cortez district and only 19 km northwest of the thesis study area, erupted from a caldera-forming magma chamber that measured $\sim 300 \text{ km}^2$ at a depth of 8-10 km (John et al., 2008). The Cortez Hills CTD, located on the east margin of the Caetano caldera, contains abundant rhyolite quartz porphyry dikes associated with the late stages of Carlin-type gold mineralization that have ${}^{40}Ar/{}^{39}Ar$ ages of about 35.46 \pm 0.05 Ma (Arbonies et al., 2011; Colgan et al., 2011). These and other relatively tight age relationships have stimulated research into the role of Eocene magmatism for Carlin-type hydrothermal systems and suggest magma bodies at ~ 10 km provided heat, and possibly fluid, and/or metals (Henry and Boden, 1998; Ressel et al., 2000a, b; Henry and Ressel, 2001; Muntean et al., 2011). Extensional structures active during the Eocene likely played a role for Carlin-type mineralization, but Eocene near-surface expression of extension was relatively minor compared to major extension that postdates Eocene-Oligocene magmatism (Henry et al., 2001; Cline et al., 2005 and references therein; Colgan and Henry, 2009).

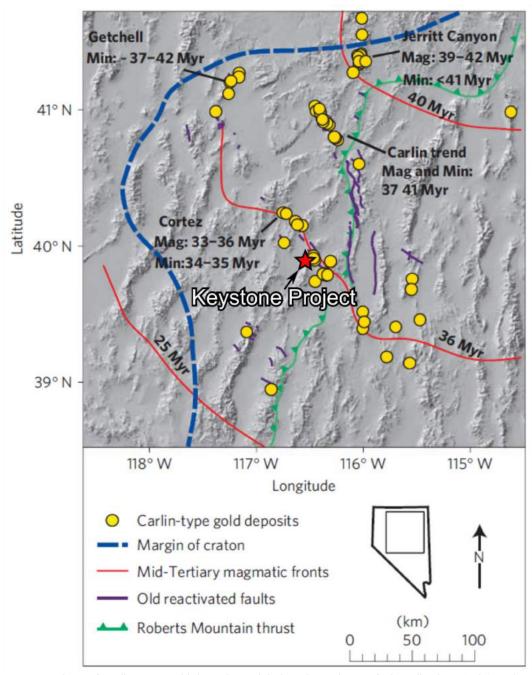


Figure 1. Locations of Carlin-type gold deposits and their estimated age of mineralization (Min) and age of associated magmatism (Mag). The dashed blue line represents the craton margin based on Sr isotopes, which controlled passive margin deposition from the Late Proterozoic through Early Mississippian. The red lines mark the limits of the advancing magmatic arc at indicated times. Purple lines mark old reactivated fault systems. Green line marks the easternmost extent of the Roberts Mountains allochthon during the Late Devonian-Early Mississippian Antler orogeny. Red star marks location of Keystone. Modified from Muntean et al. (2011). Age data for magmatism and mineralization are: Getchell (Groff et al., 1997; Hall et al., 2000; Tretbar et al., 2003), Jerritt Canyon (Hofstra et al., 1999), Carlin (Ressel et al., 2000a, b; Ressel and Henry, 2006), and Cortez (Colgan et al., 2011; Arbonies et al., 2011).

Keystone Project

The Keystone project is an early-stage gold exploration project operated by U.S. Gold Corp. and is located in northern Simpson Park Mountains, in the Battle Mountain-Eureka mineral belt of north-central Nevada (Figure 2). No mineral resources currently exist at Keystone, but the historic Keystone mine in the Roberts mining district was periodically exploited for base metals in skarn from its discovery in 1870 until 1962 (Roberts et al., 1967). Mineralization at Keystone occurred along the contact of the Walti granodiorite intrusion and metasomatized Devonian carbonates of the Keystone window; reported primary ore minerals include sphalerite, galena, chalcopyrite, and pyrite.

Keystone has many features relevant to CTDs. It exposes lower-plate carbonate strata in the Keystone window (Plate 1), which is surrounded by allochthonous, or upper-plate, chert, siltstone, sandstone, basalt, and mudstone. In addition, the Keystone window and immediately flanking area are cored by four Eocene intermediate to silicic stocks (Walti, Mud Springs, Gund, and rhyolite porphyry) and numerous sills and dikes emanate from them; coeval andesite through rhyolite lavas are widespread and flank intrusions. Hydrothermal alteration commonly associated with Carlin-type deposits, including decarbonatization of limestone, and silicification and argillization of siliciclastic rocks, are recorded in surface exposures and drill core. Although no gold resource currently exists at Keystone, nearby sedimentary rock-hosted gold deposits include those at Tonkin Springs, Gold Bar, and Cortez (Figure 2), which are from 5 km to 20 km away. The on-trend location of Keystone, 25 km south of the giant Cortez Hills and Goldrush CTDs of the Cortez district, make it ideal for the study of proximal to distal styles of Eocene mineralization. Characterization of wall rock alteration and igneous rocks, including their age, composition, and depth of emplacement, serve as the basis to explore the relationship between Eocene magmatism and CTDs.

Few publications on the geology of Keystone exist beyond regional mapping (Roberts et al., 1967). Biotite from the Walti pluton gave a K-Ar age of 34.2±0.7 Ma (Silberman and McKee, 1971; recalculated to decay constants and isotopic abundances of Steiger and Jäger (1977)). The nearest studies were focused on stratigraphy and structures of either the northern Simpson Park Mountains (Johnson, 1959; McKee and Conrad, 1994; Arney, 2013) or of the Roberts Mountains (McKee, 1986; McKee et al., 1986; Fair, 2012; Arney, 2013; Finney et al., 2015). Publications on the nearby Tonkin Springs and Gold Bar districts include Mehrtens (1987), Espell and Rich (1991), and Yigit et al. (2006), respectively. This thesis is therefore the first detailed geologic study at Keystone and most of it focuses on mapping and characterization of Keystone's igneous rocks and their age relationships to hydrothermal alteration and mineralization. Detailed stratigraphy and structural geology are beyond the scope of this thesis. It is the author's hope that future work at the Keystone window will be aided by the context and timing of Eocene magmatism this thesis provides.

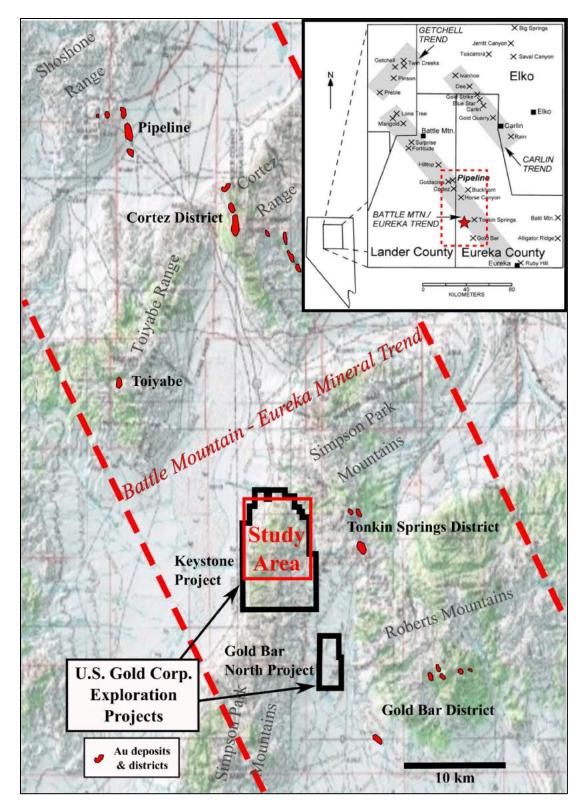


Figure 2. Location map of the Keystone project and this study area with nearby gold deposits (red polygons) and districts. Inset shows location within Nevada and within the Battle Mountain-Eureka trend. Red star in the inset figure marks Keystone.

Methods

Field Methods

Field work was conducted by the author in the summers of 2017 and 2018 and incorporated detailed outcrop-style mapping at 1:2000- and 1:5000-scale on paper using a detailed NAIP color photo base; mapping focused on igneous lithologies and hydrothermal alteration. Geology was later digitized in ArcGIS from Esri. Detailed mapping and stratigraphy by U.S Gold Corp. geologist Thomas Chapin supported final map products of this thesis, as have published maps by Roberts et al. (1967). Aeromagnetic, resistivity, and gravity survey data provided by U.S. Gold Corp. also supported the final map product.

Sampling

For this study, 143 rock-chip samples were collected from outcrops and from drill core provided by U.S. Gold Corp. Igneous rocks with the least amount of alteration as well as those possessing different alteration assemblages were sampled and later analyzed for geochemistry and petrography. Sampling was also undertaken to assess a sample's appropriateness for isotopic dating; criteria for dating included the importance of a given map unit and/or its alteration in addressing questions of magmatism and mineralization. Potassium-bearing igneous minerals such as hornblende, biotite, sanidine, and plagioclase were sought for ⁴⁰Ar/³⁹Ar analyses, whereas zircon was appropriate for acquiring igneous ages in highly altered igneous rocks using U/Pb methods. Dating of K-bearing clays, particularly illite, was accomplished by sampling pervasive alteration of feldspar in altered and/or mineralized dikes.

Petrography

Rock samples were sawed at the University of Nevada, Reno (UNR) and slabs were sent to Wagner Petrographic in Lyndon, Utah for thin-section preparation. A total of 114 30-µm-thick standard and polished thin sections were made. Thin sections were inspected by petrographic microscope under transmitted and reflected light, and by scanning electron microscope (SEM) at UNR, under secondary electron and backscatter electron (BSE) imaging modes using a JEOL JSM-6010LA instrument. The JEOL SEM is equipped with an energy-dispersive X-ray spectrometer (EDS), which is useful for the semiquantitative determination of elements. Plagioclase compositions were determined semi-quantitatively by SEM-EDS, and by the Michel-Levy and Carlsbad-albite method using the petrographic microscope.

Geochemistry

Fresh and slightly weathered samples were coarse-crushed using jaw and cone crushers at UNR to gravel-sized fractions, hand-picked for chips having only fresh surfaces, and then sent to ALS Global for major- and trace-element analysis using the ME-MS81 package. The samples were pulped, then fused in a resistance furnace using a lithium borate flux. The resultant glass beads were then completely dissolved in a 4-acid digestion and analyzed using ICP-AES and ICP-MS. Sulfur and carbon were determined using Leco analysis, and fire assay using an aqua regia digestion was used for gold determinations. Additional ICP and fire-assay data from rock chip, stream sediment, soil, and drill core samples were provided by U.S. Gold Corp. Geochemical interpretations and plots were assembled with ioGAS from REFLEX.

U-Pb Zircon Dating

Whole-rock samples were crushed using a jaw crusher and disk mill, rinsed in water, dried, and sieved to below 100-mesh at UNR. A non-magnetic fraction was then separated from the sample using a Frantz Isodynamic Magnetic Separator (side slope 15°, tilt 25°, 1.7 amperes). Zircons were separated from the non-magnetic fraction using methylene iodide as a high-density liquid. After final rinsing in acetone, zircon separates were sent to the Arizona Laserchron Center (ALC) in Tucson, AZ for mounting, imaging, and analysis.

Cathodoluminescence (SEM-CL) images were taken of the mounted zircons to examine growth zonation and verify locations of spot analyses. Zircons were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), using a Teledyne Analyte G2 Excimer laser attached to a Thermo Fisher Scientific Element2 ICP-MS. Laser spot sizes were set to 20µm diameter. Zircon standards used during analysis included FC-1 from the Duluth gabbro complex (1099.5±1.9 Ma), SL-Mix from Sri Lanka (563.2±4.8 Ma), and R-33 from the Ecstall pluton from the Coast Range, of British Columbia. (419.3±0.4 Ma) (Pullen et al., 2018; for further details on analytical procedures refer to ALC's website (https://sites.google.com/a/laserchron.org/laserchron).

⁴⁰Ar/³⁹Ar Dating

Thin sections were reviewed for viable K-bearing minerals for igneous crystallization and alteration dating. Rock samples were crushed and sieved to fractions between 20-60 and 60-80 standard mesh at the University of Nevada, Reno. Both magnetic and non-magnetic fractions were then separated from the sample using a Frantz Model LB-1 Isodynamic magnetic separator. Biotite and homblende were handpicked from magnetic fractions. Potassium feldspars were separated from the non-magnetic fraction using deionized water-diluted lithium metatungstate as a high-density liquid, and handpicked from the float fraction. Plagioclase crystals were handpicked from the sink fraction. Mineral separates had a final rinsing in acetone. Samples with pervasively sericitized feldspar phenocrysts were selected for ⁴⁰Ar/³⁹Ar illite dating of the hydrothermal event. Selected samples were analyzed by short-wave infrared spectroscopy (SWIR) using the ASD Terraspec to differentiate white clay minerals such as kaolinite and illite. Thin sections of selected samples were also reviewed to evaluate the crystallinity and size of illite grains and to verify there was no remnant feldspar. Altered phenocryst sites were plucked directly from the hand sample without crushing. Mineral separates were sent to the New Mexico Geochronology Research Laboratory in Socorro, NM, for irradiation and ⁴⁰Ar/³⁹Ar analysis.

Local Geology

Paleozoic allochthonous rocks of the basin domain

Mapping by Thomas Chapin and supporting biostratigraphy and basalt geochemistry identified Upper Cambrian-Early Ordovician Comus Formation, Ordovician Valmy Formation, Silurian Elder Sandstone, and Devonian Slaven Chert comprising the Roberts Mountains allochthon at Keystone (Figure 3; T. Chapin, 2017, unpublished report for U.S. Gold Corp.; P. Zippi, 2016-2018, unpublished reports for U.S. Gold Corp.). These upper-plate rocks cover over 15 km² within the study area (Plate 1). The lensshaped north-northeast trending Keystone lower-plate window through the upper plate exposes the underlying younger Early Silurian through Late Devonian lower-plate carbonate rocks. Ordovician Valmy comprises most of the upper plate and overlies upper-plate Comus as well as lower-plate Late Devonian Horse Canyon and Wenban formations along the margins of the window. Biostratigraphy shows upperplate rocks decrease in age from Late Cambrian to Silurian south and southeastward, and to Late Devonian beyond the study area. (Figure 3; Table 1; P. Zippi, 2016-2018, unpublished reports for U.S. Gold Corp.).

Cambrian-Ordovician Comus Formation (COc)

In the northeastern part of the study area are outcrops of dark silty limestone with mudstone and intercalated alkalic greenstone debris flows and mafic sills (Plate 1). Dating of conodonts returned ages of latest Cambrian or Ibexian to Early Ordovician or lowest Whiterockian (Table 1). Both the lithology and age identify these rocks as equivalent to the Late Cambrian Comus Formation, described in the Osgood Mountains 150 km north-northwest of Keystone and along the Getchell mineral trend (Hotz and Willden, 1964; Breit et al., 2005; Cook, 2015).

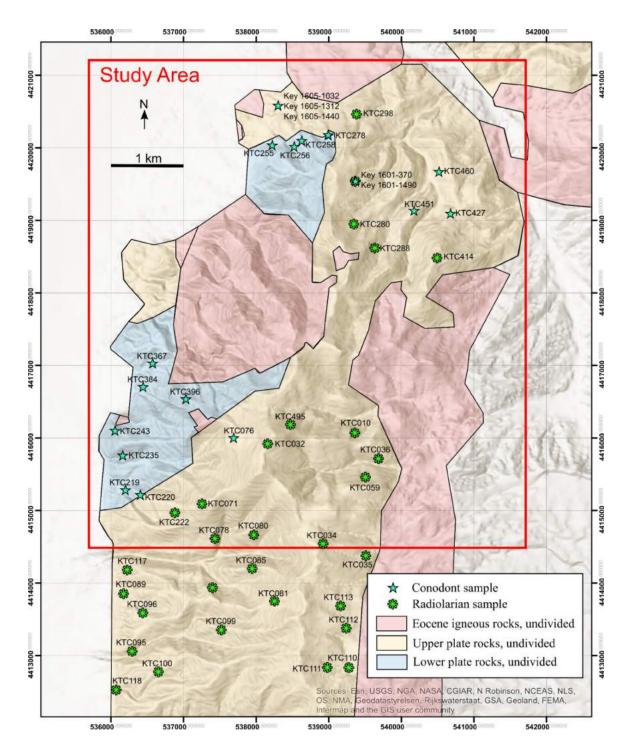


Figure 3. Generalized geologic map showing locations of samples collected by Tom Chapin and submitted for conodont and radiolaria analysis. Biostratigraphy results are summarized in Table 1.

NorthEastSample type90 4419541 539367drill core @370'70 4419541 539367drill core @1490'71 4419541 539367drill core @140'72 4420589 538304drill core @140'74 4415919 538304drill core @112'4415919538156Outcrop4415711539513Outcrop4415711539503Outcrop4415711539503Outcrop4415604537069Outcrop441563539503Outcrop4415645539503Outcrop4415666537769Outcrop44114503538255Outcrop4411375538255Outcrop441133535357316Outcrop44113353535675Outcrop44113353535251Outcrop44113353535255Outcrop44113353535255Outcrop44113353535255Outcrop44113353535255Outcrop44113353535255Outcrop44113353535255Outcrop44113353535255Outcrop44113353535255Outcrop44113353535255Outcrop44113353535255Outcrop44113353533232Outcrop44113353533232Outcrop4411418540545Outcrop4411418540545Outcrop4411418540545Outcrop <t< th=""><th></th><th>Age</th><th></th><th></th></t<>		Age		
4419541 539367 drill core @1400' 4419541 539367 drill core @1312' 4420589 538304 drill core @1312' 4420589 538304 drill core @1312' 4420589 538304 drill core @1312' 441673 539365 Outcrop 44115715 5385166 Outcrop 44115711 539513 Outcrop 44115711 5395133 Outcrop 44115745 533255 Outcrop 44114611 537759 Outcrop 44113059 535255 Outcrop 44113059 536534 Outcrop 44113059 536534 Outcrop 44113059 536534 Outcrop 44113059 539232 Outcrop 44112851 539232 Outcrop 44112861 538631	Fossil Type Period	Epoch/Stage	Formation	Te ctonic plate
4419541 539367 drill core ($@370'$ 4420589 538304 drill core ($@132'$ 4420589 538304 drill core ($@1312'$ 4420589 538304 drill core ($@1440'$ 441673 539365 Outcrop 44115711 539514 Outcrop 44115711 539514 Outcrop 44115711 539688 Outcrop 44115711 539514 Outcrop 44115711 539533 Outcrop 44115711 539533 Outcrop 44115704 5375690 Outcrop 44115045 5377556 Outcrop 44115045 5377590 Outcrop 441146011 5377396 Outcrop 44113745 538255 Outcrop 44113755 536534 Outcrop 44113059 537521 Outcrop 44113059 539232 Outcrop 44112850 539232 Outcrop 44113059 539232 Outcrop 44113059 539232 Outcrop 44112850 539232 Outcrop 44112861 539232 <		Early Frasnian	Wenban	Lower
4420589 538304 drill core @ 1032' 4420589 538304 drill core @ 1312' 4420589 538304 drill core @ 1312' 4415013 539365 Outcrop 4415711 538514 Outcrop 4415711 539514 Outcrop 4415711 539514 Outcrop 4415711 539514 Outcrop 4415711 539538 Outcrop 4415604 537560 Outcrop 4415604 537569 Outcrop 4415604 5377556 Outcrop 4415604 537759 Outcrop 4414503 537759 Outcrop 4413755 538799 Outcrop 4413575 53654 Outcrop 4413555 539272 Outcrop 4413565 539272	rad	Katian	Valmy	Upper
4420589 538304 drill core @1312' 4420589 538304 drill core @1440' 4416073 539365 Outcrop 4415919 538156 Outcrop 4415043 539513 Outcrop 4415094 539514 Outcrop 4415094 537256 Outcrop 4415094 537256 Outcrop 4415094 537256 Outcrop 4415094 537256 Outcrop 4415094 537059 Outcrop 4415094 537755 Outcrop 441305 539538 Outcrop 441375 536175 Outcrop 4413587 536436 Outcrop 4413587 536436 Outcrop 4413587 536436 Outcrop 4413587 536436 Outcrop 4413587 538979 Outcrop 4413587 539636 Outcrop 4413587 539635 Outcrop 4413586 539225 Out		Frasnian	Wenban	Lower
4420589 538304 drill core @ 1440' 4416073 539365 Outcrop 4415919 538156 Outcrop 4414572 539368 Outcrop 4414573 539514 Outcrop 441569 539513 Outcrop 441563 539503 Outcrop 441563 539536 Outcrop 441569 537569 Outcrop 4415694 537556 Outcrop 4415694 5377690 Outcrop 4415094 537756 Outcrop 4415094 537759 Outcrop 44115095 537759 Outcrop 44113755 53654 Outcrop 44113353 53654 Outcrop 44113353 53657 Outcrop 44113553 53657 Outcrop 44113535 53657 Outcrop 44113535 53657 Outcrop 44113535 53657 Outcrop 44113563 539252 Outcrop <td></td> <td>Late Ibexian</td> <td>Comus</td> <td>Upper</td>		Late Ibexian	Comus	Upper
4416073 539365 Outcrop 4415919 538156 Outcrop 44115711 539514 Outcrop 44115711 539563 Outcrop 44115711 539563 Outcrop 44115045 539556 Outcrop 44115045 539563 Outcrop 44115045 537566 Outcrop 44115045 537565 Outcrop 44115025 537969 Outcrop 44113055 535255 Outcrop 44113055 5351756 Outcrop 44113755 535654 Outcrop 44113535 5357316 Outcrop 4411355 535721 Outcrop 4411335 535721 Outcrop 4411335 535721 Outcrop 4411335 535721 Outcrop 4411336 539232 Outcrop 4411336 53654 Outcrop 4411336 53657 Outcrop 4411336 53657 Outcrop 4411336 536657 Outcrop 441	cono	Late Ibexian	Comus	Upper
4415919 538156 Outcrop 4414571 539514 Outcrop 4414571 539588 Outcrop 4415711 539588 Outcrop 4415711 539569 Outcrop 4415711 539503 Outcrop 4415711 539569 Outcrop 441566 537569 Outcrop 4416004 537690 Outcrop 4411375 538255 Outcrop 4411375 536436 Outcrop 4411375 536545 Outcrop 4411353 537211 Outcrop 4411353 537521 Outcrop 4411353 53654 Outcrop 4411353 539232 Outcrop 44113633 539232 Outcrop 44113633 539232 Outcrop 44113633 539232 Outcrop 4411375 536654 Outcrop 44113633 539136 Outcrop 44113633 539654 Outcrop <	rad Late Ordovician to Late Silurian		Cherry Spring	Upper
4414542 533922 Outcrop 4414571 539688 Outcrop 4415711 539514 Outcrop 4415711 539588 Outcrop 4415711 539569 Outcrop 4415604 537566 Outcrop 4415045 539513 Outcrop 4415045 537969 Outcrop 4413745 538255 Outcrop 4413755 536175 Outcrop 4413855 535436 Outcrop 4413855 535454 Outcrop 4413555 536554 Outcrop 4413555 5395721 Outcrop 4413555 539573 Outcrop 4413555 539573 Outcrop 44113663 539232 Outcrop 44113655 539232 Outcrop 44113653 5395654 Outcrop 44113663 539232 Outcrop 44113663 539232 Outcrop 44113663 536657 Outcrop	Late Or			Upper
4414379 539514 Outcrop 4415711 539503 Outcrop 4415711 539588 Outcrop 4415711 539569 Outcrop 4415604 53756 Outcrop 44116004 537739 Outcrop 4411606 537799 0utcrop 441365 537949 Outcrop 441365 537949 Outcrop 441365 538795 Outcrop 4413059 536255 Outcrop 4413059 53654 Outcrop 4413059 536554 Outcrop 4413353 539732 Outcrop 4413353 539535 Outcrop 4413353 536674 Outcrop 4412851 539935 Outcrop 4413353 536675 Outcrop 4413365 539136 Outcrop 4413375 536675 Outcrop 44113695 539136 Outcrop 44113675 536675 Outcrop		late Llandovery Early Wenlock		Upper
4415711 53968 Outcrop 441563 539503 Outcrop 4415004 53756 Outcrop 4415004 53756 Outcrop 4416004 53756 Outcrop 44116004 537949 Outcrop 44113059 538175 Outcrop 44113055 535058 Outcrop 44113059 536175 Outcrop 44113059 536288 Outcrop 44113059 536544 Outcrop 44113059 538979 Outcrop 44113059 5385721 Outcrop 44113059 539572 Outcrop 44113059 539572 Outcrop 44113353 539772 Outcrop 44113353 539739 Outcrop 44113395 539673 Outcrop 4411333 539525 Outcrop 4411333 539525 Outcrop 44114072 538619 Outcrop 44115281 536657 Outcrop <td></td> <td>late L</td> <td></td> <td>Upper</td>		late L		Upper
4415463 539503 Outcrop 4415094 537566 Outcrop 44116004 537690 Outcrop 44114611 537433 Outcrop 44114611 537499 Outcrop 44114611 537499 Outcrop 44114611 5377949 Outcrop 44113059 536175 Outcrop 44113059 53654 Outcrop 44113059 536554 Outcrop 44113353 539772 Outcrop 44113353 539773 Outcrop 44113395 539773 Outcrop 44113395 539732 Outcrop 44113395 539673 Outcrop 44115281 53881 Outcrop 44115283 536657 Outcrop 44116102 536657 Outcrop	rad Late Ordovician to Early Silurian			Upper
4415094 537256 Outcrop 4416004 537690 Outcrop 4414601 5377690 Outcrop 4413745 538255 Outcrop 4413755 538255 Outcrop 4413755 537499 Outcrop 4413755 535654 Outcrop 4413059 535288 Outcrop 4413059 535654 Outcrop 4413353 539272 Outcrop 4413353 539272 Outcrop 4413353 539232 Outcrop 4413353 539232 Outcrop 4413395 539232 Outcrop 4413395 539232 Outcrop 4413395 539673 Outcrop 441414188 536255 Outcrop 44141528 536637 Outcrop 44115283 536673 Outcrop 44115283 536675 Outcrop 44115283 536675 Outcrop 44115283 536675 Outcrop		late	-	Upper
4416004 537690 Outcrop 4414611 537433 Outcrop 4414611 537433 Outcrop 4413745 538255 Outcrop 44113755 537599 Outcrop 44113055 555675 Outcrop 44113055 555674 Outcrop 44113353 537521 Outcrop 44113353 535654 Outcrop 44113353 539232 Outcrop 44113353 539232 Outcrop 44113395 539232 Outcrop 44113395 539232 Outcrop 44113395 539232 Outcrop 44113395 539255 Outcrop 44113395 539673 Outcrop 44114972 536673 Outcrop 44116102 536657 Outcrop 44116102 536657 Outcrop 44116102 538524 Outcrop 44116102 536657 Outcrop 44116102 538651 Outcrop 44116102 538657 Outcrop	rad Late Ordovician to Early Silurian	ian Katian to mid-Wenlock	Cherry Spring	Upper
4414611 537433 Outcrop 4414665 537769 Outcrop 4413745 538255 Outcrop 4413745 538255 Outcrop 4413755 536175 Outcrop 4413355 5365436 Outcrop 4413355 5354288 Outcrop 4413355 535654 Outcrop 4413355 5354536 Outcrop 4413355 539272 Outcrop 4413355 539232 Outcrop 4413393 539232 Outcrop 4413393 539232 Outcrop 4413395 539235 Outcrop 4413395 539235 Outcrop 4413395 536647 Outcrop 4414365 537392 Outcrop 4414365 536657 Outcrop 4415228 536657 Outcrop 4415228 536657 Outcrop 4415228 536657 Outcrop 4415228 536657 Outcrop 4415728 536657 Outcrop 4416102 <td>cono Middle Ordovician to Silurian</td> <td></td> <td></td> <td>Upper</td>	cono Middle Ordovician to Silurian			Upper
4414668 537969 Outcrop 4413745 538255 Outcrop 4413745 538255 Outcrop 4413755 536175 Outcrop 4413355 53553654 Outcrop 4413355 535554 Outcrop 4413355 553654 Outcrop 4413355 553654 Outcrop 4413355 539272 Outcrop 4413355 539232 Outcrop 4413365 539232 Outcrop 4413393 539232 Outcrop 4413393 539232 Outcrop 4413395 537392 Outcrop 4413665 537392 Outcrop 4412675 536647 Outcrop 4415285 536198 Outcrop 4415286 536657 Outcrop 4415286 536657 Outcrop 4415288 536657 Outcrop 4415288 536657 Outcrop 4415788 536574 Outcrop 4416102 536657 Outcrop 44120042 <td>rad Early Silurian</td> <td>late Llandovery to Early Wenlock</td> <td></td> <td>Upper</td>	rad Early Silurian	late Llandovery to Early Wenlock		Upper
4413745 538255 Outcrop 4413745 538255 Outcrop 4413555 536175 Outcrop 4413555 536545 Outcrop 4413555 536554 Outcrop 4413555 536554 Outcrop 4413555 536554 Outcrop 4413355 539272 Outcrop 4413355 539272 Outcrop 4413365 539232 Outcrop 4413693 539136 Outcrop 4413693 539136 Outcrop 4413693 539136 Outcrop 4413693 539136 Outcrop 44112651 538673 Outcrop 441126615 Outcrop 0utcrop 441522 536657 Outcrop 4415228 536165 Outcrop 4415788 536657 Outcrop 4415788 536657 Outcrop 4415788 536657 Outcrop 4415788 536657 Outcrop 4415728 536657 Outcrop 44150102 <td>Late Orde</td> <td>Kat</td> <td>Cherry Spring</td> <td>Upper</td>	Late Orde	Kat	Cherry Spring	Upper
4414202 537949 Outcrop 4413553 536175 Outcrop 4413553 536436 Outcrop 4413555 536436 Outcrop 4413555 536545 Outcrop 4411275 5336754 Outcrop 44112855 539579 Outcrop 44112855 539579 Outcrop 44112855 539979 Outcrop 44112855 539979 Outcrop 44112855 5399136 Outcrop 44113693 539136 Outcrop 44113693 539136 Outcrop 44112873 536073 Outcrop 44115237 536073 Outcrop 44115285 536198 Outcrop 44115285 536657 Outcrop 44116102 538522 Outcrop 44116102 538631 Outcrop 44116102 538631 Outcrop 44116102 538631 Outcrop 44120101 538631 Outcrop 44120101 5386331 Outcrop	rad Early Silurian	mid-Llandovery	Cherry Spring	Upper
4413853 536175 Outcrop 4413559 536288 Outcrop 4413559 53654 Outcrop 4413555 535654 Outcrop 4412755 535654 Outcrop 4412850 539272 Outcrop 44112850 539579 Outcrop 44112850 5395136 Outcrop 44113693 539136 Outcrop 44113693 530136 Outcrop 44115237 536073 Outcrop 44115237 536677 Outcrop 44116102 536657 Outcrop 44116102 538524 Outcrop 44116102 538631 Outcrop 44116102 538631 Outcrop 44116101 538631 Outcrop 44120017 538524 Outcrop 44201017 538631 Outcrop <	rad Early Devonian or younger	n/a	Slaven	Upper
4413059 536288 Outcrop 4413559 536436 Outcrop 4413553 535654 Outcrop 4412850 539679 Outcrop 44112851 538979 Outcrop 44112855 539232 Outcrop 44112850 539579 Outcrop 44113393 539136 Outcrop 44115237 536073 Outcrop 44115283 536198 Outcrop 44115283 536657 Outcrop 44116102 536657 Outcrop 44116102 538621 Outcrop 44116102 538631 Outcrop 44120042 538631 Outcrop 44120101 538633 Outcrop 4420101 538631 Outcrop 4420101 538631 Outcrop 4420101 538631 Outcrop <t< td=""><td>Early]</td><td></td><td>Slaven</td><td>Upper</td></t<>	Early]		Slaven	Upper
4413587 536436 Outcrop 4413587 535654 Outcrop 441275 536654 Outcrop 4412850 539272 Outcrop 44113695 539232 Outcrop 44113693 539136 Outcrop 44114188 536073 Outcrop 44115237 536607 Outcrop 4415284 536198 Outcrop 4415285 5366165 Outcrop 4415285 536657 Outcrop 4415785 536657 Outcrop 4415785 536657 Outcrop 4415785 536657 Outcrop 4415785 538621 Outcrop 44150101 538631 Outcrop 44201015 538633 Outcrop 44201015 539003 Outcrop 44		Frasnian	Slaven	Upper
4413353 537521 Outcrop 4412775 536654 Outcrop 4412850 539272 Outcrop 4412851 539273 Outcrop 4413395 539136 Outcrop 4413395 539136 Outcrop 4413395 539136 Outcrop 4414188 537392 Outcrop 4414188 536073 Outcrop 4415287 536073 Outcrop 4415284 536198 Outcrop 4415284 536198 Outcrop 4415284 536165 Outcrop 4415284 536165 Outcrop 4415284 536165 Outcrop 4415285 536165 Outcrop 4415285 536637 Outcrop 4416102 538657 Outcrop 4420101 538524 Outcrop 4420101 538631 Outcrop 4420101 538524 Outcrop 4420101 538531 Outcrop 4418950 539338 Outcrop			Slaven	Upper
4412775 536654 Outcrop 4412850 539272 Outcrop 4412851 539272 Outcrop 4413393 539232 Outcrop 4413393 539232 Outcrop 4413393 539232 Outcrop 4413693 539136 Outcrop 44141363 537392 Outcrop 4414148 556255 Outcrop 4415284 536407 Outcrop 4415284 536198 Outcrop 4415284 536198 Outcrop 4415284 536165 Outcrop 4415284 536165 Outcrop 4415284 536657 Outcrop 4415728 536657 Outcrop 4415785 538524 Outcrop 4420101 538531 Outcrop 4420101 538533 Outcrop 4420101 538533 Outcrop 4420101 538533 Outcrop 4420101 538533 Outcrop 4418950 5393348 Outcrop			Slaven	Upper
4412850 539272 Outcrop 4412851 538979 Outcrop 4413695 539232 Outcrop 4413695 539232 Outcrop 4413946 537392 Outcrop 4413946 537392 Outcrop 4414138 536073 Outcrop 4415284 536198 Outcrop 4415284 536198 Outcrop 4415284 536165 Outcrop 4415285 5366407 Outcrop 4415285 536657 Outcrop 441572 5386254 Outcrop 441572 536657 Outcrop 441572 536657 Outcrop 4416102 536657 Outcrop 44120147 538524 Outcrop 44201017 538631 Outcrop 44201017 538531 Outcrop 44201017 538633 Outcrop 4418950 539348 Outcrop		Frasnian	Slaven	Upper
4412851 538979 Outcrop 4413395 537392 Outcrop 4413645 537392 Outcrop 441346 537392 Outcrop 441348 536255 Outcrop 4414188 536255 Outcrop 4415287 536073 Outcrop 4415284 540545 Outcrop 4415222 536407 Outcrop 4415222 536407 Outcrop 4415222 536481 Outcrop 4415225 536657 Outcrop 4416102 538651 Outcrop 4412013 538524 Outcrop 4420101 538531 Outcrop 4420101 538531 Outcrop 4420101 538531 Outcrop 4420101 538533 Outcrop 4418950 5393348 Outcrop		Middle Famennian	Slaven	Upper
4413393 539232 Outcrop 4413663 537392 Outcrop 4413663 537392 Outcrop 4411253 536073 Outcrop 4412545 536073 Outcrop 4415264 540545 Outcrop 4415284 536198 Outcrop 4415222 536407 Outcrop 4415222 536467 Outcrop 4415222 536655 Outcrop 4415728 536554 Outcrop 4416102 536657 Outcrop 44120142 538524 Outcrop 4420101 538631 Outcrop 4420101 538631 Outcrop 4420101 538534 Outcrop 4418950 539348 Outcrop		Middle Famennian	Slaven	Upper
4413693 539136 Outcrop 4413946 537392 Outcrop 44113946 537392 Outcrop 44114188 536255 Outcrop 44115237 536073 Outcrop 44115284 536165 Outcrop 4411522 536165 Outcrop 44116102 536057 Outcrop 44116102 538222 Outcrop 4420017 538524 Outcrop 4420101 538534 Outcrop 4420101 538534 Outcrop 4420101 538534 Outcrop 4418950 539348 Outcrop		Middle Famennian	Slaven	Upper
4413946 537392 Outcrop 44114188 536225 Outcrop 44114188 536073 Outcrop 4412537 536073 Outcrop 4415284 540545 Outcrop 4415284 5361073 Outcrop 441572 536407 Outcrop 441612 536657 Outcrop 4416102 536057 Outcrop 4420017 538524 Outcrop 4420101 538534 Outcrop 4420101 538534 Outcrop 4418950 539348 Outcrop		Middle Famennian?	Slaven	Upper
4414188 536225 Outcrop 4412537 536073 Outcrop 4412537 536073 Outcrop 4415284 540545 Outcrop 4415284 536198 Outcrop 4415725 536407 Outcrop 4415725 536181 Outcrop 4416102 536057 Outcrop 4420101 538524 Outcrop 4420101 538531 Outcrop 4420101 538534 Outcrop 4420101 538534 Outcrop 4418950 539348 Outcrop	Lat		Slaven	Upper
4412537 536073 Outcrop 4412537 540545 Outcrop 4415284 540545 Outcrop 4415222 536198 Outcrop 4415225 536407 Outcrop 4414972 536581 Outcrop 44116102 536057 Outcrop 4420107 538222 Outcrop 4420101 538631 Outcrop 4420101 538633 Outcrop 4420101 538633 Outcrop 4420101 538634 Outcrop 4418950 539033 Outcrop		us n/a	Slaven	Upper
4420478 540545 Outcrop 4415228 536198 Outcrop 4415228 536407 Outcrop 441572 536881 Outcrop 441578 53657 Outcrop 4416102 536057 Outcrop 4420017 538222 Outcrop 4420101 538631 Outcrop 4420101 538633 Outcrop 4420101 538633 Outcrop 4420101 538634 Outcrop 4420101 538634 Outcrop			Slaven	Upper
4415284 536198 Outcrop 4415282 536407 Outcrop 4415725 536881 Outcrop 4415758 536165 Outcrop 4415758 536165 Outcrop 4416102 538627 Outcrop 4420017 538524 Outcrop 4420101 538631 Outcrop 4420101 538633 Outcrop 4420101 538633 Outcrop 4420172 539003 Outcrop	rad Late Devonian to Early Carboniferous		Slaven	Upper
4415222 536407 Outcrop 4414972 536881 Outcrop 441578 536165 Outcrop 4416102 536057 Outcrop 4420017 538224 Outcrop 4420101 538631 Outcrop 4420101 538631 Outcrop 4420101 538534 Outcrop 4420172 539003 Outcrop 4420172 539033 Outcrop		Emsian	Wenban	Lower
4414972 536881 Outcrop 4415758 536165 Outcrop 4416102 536057 Outcrop 4420017 538224 Outcrop 4420017 538534 Outcrop 4420172 538534 Outcrop 4420172 538534 Outcrop 4420172 539003 Outcrop 4418950 539348 Outcrop			Horse Canyon	Lower
4415758 536165 Outcrop 4416102 536057 Outcrop 4420017 538222 Outcrop 4420017 538524 Outcrop 4420101 538631 Outcrop 4420102 539303 Outcrop 4418950 539348 Outcrop	Midd		Valmy	Upper
4416102 536057 Outcrop 4420042 538222 Outcrop 4420017 538524 Outcrop 4420101 538631 Outcrop 4420172 539003 Outcrop 4418950 539348 Outcrop		latest Lochkovian to Pragian	Wenban	Lower
4420042 538222 Outcrop 4420017 538524 Outcrop 4420101 538631 Outcrop 4420172 539003 Outcrop 4418950 539348 Outcrop		late Lochkovian	Wenban	Lower
4420017 538524 Outcrop 4420101 538631 Outcrop 4420172 539003 Outcrop 4418950 539348 Outcrop		Early Frasnian	Wenban	Lower
4420101 538631 Outcrop 4420172 539003 Outcrop 4418950 539348 Outcrop	e	Middle Frasnian	Wenban	Lower
4420172 539003 Outcrop 4418950 539348 Outcrop	Sih	n/a	Wenban	Lower
4418950 539348 Outcrop		n/a	Horse Canyon	Lower
		Katian	Valmy	Upper
KTC 288 4418622 539635 Outcrop rad	rad Late Ordovician	Katian	Valmy	Upper

Table 1. Summary of conodont and radiolaria fossil ages from limestone and chert strata. From P. Zippi, 2016-2018, unpublished reports

	N MLN	AD27			7	Age		
Sample ID	North	East	East Sample type Fossil Type		Period	Epoch/Stage	Formation Tectonic plate	Te ctonic plate
KTC298	4420467	539384	Outcrop		Late Ordovician	Katian	Valmy	Upper
KTC367	4417026	536578		cono	Devonian	n/a	Wenban	Lower
KTC384	4416702	536446		cono	Devonian	n/a	Wenban	Lower
KTC396	4416534	537036		cono	Devonian	n/a	Wenban	Lower
KTC414	4418486	540495		rad	Late Ordovician	Katian/Hirnantian	Valmy	Upper
KTC427	4419092 540682	540682	Outcrop	cono	Latest Cambrian	IX, Cambrian	Comus	Upper
KTC451	4419139	540180		cono	Early to Middle Ordovician	upper Ibexian to lowest Whiterockian	Comus	Upper
KTC460	4419674	540526		cono	Latest Cambrian	Latest Cambrian	Comus	Upper
KTC495	4416185	538475		rad+cono	Early Silurian	mid-Llandovery Cherry Spr	Cherry Spring	Upper

Although the Comus was originally described in the Battle Mountain district by Ferguson et al. (1952) and Roberts (1951) in the Golconda and Antler Peak quadrangles, respectively, there have been revisions to its age and lithology since (Roberts, 1964; Hotz and Willden, 1964; Cook, 2015). Along the east side of the Osgood Mountains, the Comus is predominantly alternating dolomite, limestone, and shale, with lesser chert, siltstone, and tuffaceous material. Contrasting with the structurally overlying Valmy, sandstone and quartzite are rare or absent in the Comus. Twin Creeks is a +16 Moz Au CTD in the Getchell trend east of the Osgood Mountains, and its main hosts are carbonate rocks of the Comus Formation. As described at Twin Creeks, the Comus is a distal slope to basinal plain facies unit composed of laminated and thin-bedded black shale, siltstone, and silty carbonate rocks with basaltic debris flows and abundant mafic and ultramafic alkalic sills (Breit et al., 2005). Bloomstein et al. (1991) provided a depositional model of the Comus Formation involving a Late Cambrian to Early Ordovician carbonate-capped seamount that evolved on an isolated structural block following the Late Proterozoic rifting of Rodinia. Carbonate debris flows, turbidites, and fine-grained black carbonate ooze were transported westward from the seamount, whereas siliciclastic mudstones and siltstones were transported eastward from a subaerial island arc(?) source to the west of the seamount. Isolated submarine volcanism associated with the seamount accounts for the local abundance of mafic sills and basalts, as well as their alkalic composition, which is similar to ocean island basalts or intraplate basalts and contrasts with the depleted chemical character of mid-ocean ridge basalts. Geochemistry and composition of Comus mafic rocks at Keystone is discussed in greater detail on page 78.

Drill holes at Keystone have intercepted 150 to 300 m thickness of mixed greenstone and limestone underlying siliciclastic sedimentary rocks of the Ordovician Valmy Formation, with contacts between the two units described as faulted. At Twin Creeks and regionally, the Comus is interpreted as autochthonous or parautochthonous, with the overlying, highly deformed Valmy rocks transported from farther west via a low-angle thrust fault, possibly during the Late Mississippian Antler orogeny (Hotz and Willden, 1964; Breit et al., 2005). The presence and proximity of underlying, younger lower plate and therefore, autochthonous, Devonian carbonate rocks at Keystone indicate that the Comus rocks at Keystone did not form in situ but were instead transported some distance, likely during the Antler orogeny. Occurrences of the Comus Formation have not yet been described in the Simpson Park Mountains or nearby ranges, but it is possible similar lithologies of the appropriate age received different nomenclature. Only 5 km east of Keystone is the Tonkin Springs mining district, which features numerous small gold deposits with typical Carlin-type gold alteration and mineral assemblages. One of the hosts at Tonkin Springs is the Cambrian-Ordovician Hales Formation comprised of sandy limestones, calcareous siltstones, shales, mafic tuffs, mafic sills, and minor chert (Alan Noble, 2008, Technical Report on the Tonkin Project, prepared for the former US Gold Corporation, now McEwen Mining, and different from the U.S. Gold Corp. that sponsored this project);

http://s21.q4cdn.com/390685383/files/doc_downloads/governance/reserves-and-resources/technicalreport.pdf). The Hales at Tonkin Springs was noted to be a time-equivalent to the Comus at Twin Creeks and was mapped as autochthonous, with rocks of the Ordovician Vinini Formation thrusted above it.

Ordovician Valmy Formation (Ov)

The Ordovician Valmy Formation was first described at North Peak in the Antler Peak quadrangle of the Battle Mountain district, 90 km northwest of Keystone (Roberts, 1964) and subsequently many other localities in northern Nevada including the Cortez Mountains north of Keystone. The Valmy comprises a substantial part of the Roberts Mountains allochthon (Roberts, 1964; Gilluly and Masursky, 1965; Madrid, 1987). Indeed, the Valmy makes up most of the upper plate outcrops in the study area. Lithologies of the Valmy at Keystone are heterogeneous and include calcareous mudstone locally intercalated with greenstone, but the unit is dominated by mudstone, siltstone, and sandy siltstone, bedded chert, and quartzite.

Lithologically, the Ordovician Vinini Formation is similar to the Valmy and is mapped in the Roberts Mountains to the east of Keystone as well as the Cortez Mountains to the north. The two units have been interpreted as lateral and/or transitional equivalents, the Vinini having more carbonate and shale, and the Valmy more quartzite and greenstone (Gilluly and Masursky, 1965; Madrid, 1987). Visits to the type locality at Vinini Creek in the Roberts Mountains by the author and U.S. Gold Corp. geologists support the presence of more Valmy-like upper-plate lithologies at Keystone. Detailed mapping at Keystone (T. Chapin, 2017, unpublished report for U.S. Gold Corp.) divided the Valmy Formation into three informal subunits. The lower Valmy member is an Early to Middle Ordovician unit about 60 m thick that rests conformably on the Late Cambrian to Early Ordovician Comus Formation, and is dominated by well-sorted and well-rounded quartz grains in quartzite and yellow sandstone. The middle Valmy is about 180 m thick and is from Late Darriwilian to Katian (Middle to Late Ordovician) and comprises a submarine fan delta sequence with sandstone, siltstone, mudstone, chert, and minor pillow basalt and hyaloclastite. The upper Valmy is about 90 m thick and consists of polymict siltstone with minor chert and continues into the Early Silurian. At the top of the Valmy is the Cherry Spring Chert from Llandovery to early Wenlock (Early to Middle Silurian) comprised of thick chert beds that may have a distinctive strong green color (Table 1).

Valmy rocks generally dip 30-50 degrees to the east in the eastern half of the study area, with topography less than but generally reflecting this eastward dip (Plate 1). To the north and west of the Walti pluton, beds are either flat or dip gently north and west. Such opposing dips form a dome around the Keystone window and Walti pluton that was subsequently tilted east by young normal faults on the west flank of the range. Alkalic mafic sills and greenstone of the Valmy are similar to those of the Comus and form a semi-continuous trend along the southeast margin of the window. Contact metamorphism surrounding the Walti pluton caused hornfels metamorphism and makes differentiating siltstone, mudstone, and chert difficult. Chaotic folding and displacement of chert beds along minor faults occur along the eastern margin of the Walti pluton (Figure 4), whereas Valmy rocks to the west of the pluton are not affected by strong deformation and recrystallization. Hydrothermal alteration and mineralization of upper plate rocks are widespread throughout the Keystone property; alteration includes bleaching, brecciation, silicification, and local gossan of red-yellow limonite after primary sulfides.

Figure 4. Photo of chaotically folded chert beds of the Valmy Formation east of the Walti pluton. Hammer is 28 cm long.

Valmy Quartzite in the Mud Springs Pluton (Ovq)

Resting on top of the Mud Springs pluton in the east-central part of the study are isolated 100-1000 m² outcrops of marble (ODul) and quartzite (Ovq) (Plate 1) that appear conspicuously out of place. Quartzite outcrops are contained entirely within the Mud Springs pluton. These outcrops are interpreted as stoped blocks of upper plate rocks incorporated during the rise and emplacement of the magma that formed the Mud Springs pluton. The quartzite closely resembles quartzite of the Valmy, with nearly 100% coarse (1-2mm) sub-rounded interlocking quartz grains.

Basalts of the Valmy and Comus (Ovb and COcb)

Several outcrops of mafic sills, pillow basalts, and greenstones are found in the upper plate rocks in both the Comus and Valmy formations (Plate 1). The mafic rocks partly follow specific stratigraphic horizons, most notably along the southern contact of the Keystone window (Figure 5). Outcrops are relatively isolated and discontinuous, typically spanning <50 m. Compositions range from basalt to mafic/ultramafic picrite containing abundant olivine. Basalts were not found cutting any other igneous units nor lower-plate carbonates. Textures in basalts range from fine-grained to very fine-grained hypidiomorphic equigranular to seriate (Figure 6). Porphyritic textures with an aphanitic or glassy matrix were not observed, although this may be due to pervasive weathering and/or alteration to clay that obscure original textures in some cases. The most common primary mineral assemblage includes elongate plagioclase, olivine altered to iddingsite or serpentine minerals, acicular apatite, ilmenite, magnetite, and interestingly, biotite (Figure 7). Biotite is locally so abundant that the rock shimmers black. In one sample, hornblende was also observed. Calcite is commonly present, and the basalts commonly occur either next to or even intercalated with very dark micritic limestone; the Comus at Twin Creeks similarly has basalts associated with limestone. The basalt commonly displays breccia or hyaloclastite textures and associated round em-size pillow-like forms. The presence of biotite in mafic and ultramafic rocks is unusual and indicates alkaline compositions such as those associated with ocean-island basalts (OIBs).

Outcrops of basalt near the eastern margin of the Walti pluton are hornfels altered and superficially resemble a pale-green to gray fine-grained quartzite to silicified limestone. In spite of alteration, identification of these outcrops is possible using lithogeochemistry, discussed later.

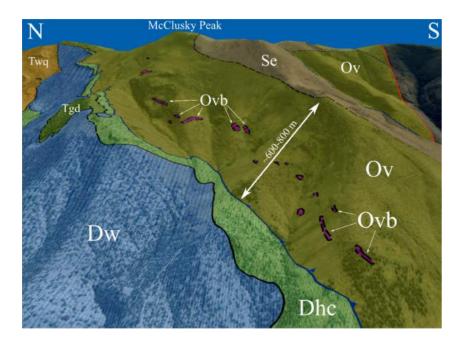


Figure 5. Oblique 3D view to the east from the Keystone lower-plate window generated in ArcGlobe. Valmy basalts (Ovb) comprise discontinuous outcrops that follow stratigraphic horizons within the Valmy Formation (Ov). The Gund diorite (Tgd) is a lopolith-shaped intrusion that is roofed by Late Devonian Horse Canyon (Dhc) just below the Roberts Mountains allochthon.

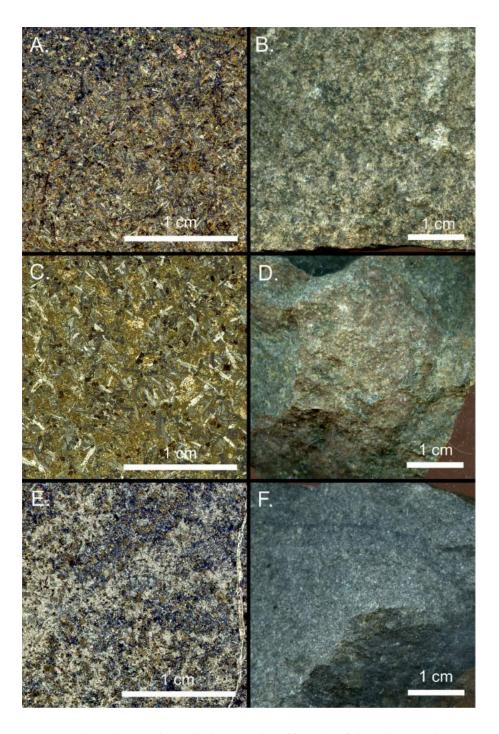


Figure 6. Representative micrographs and photographs of basalts of the Valmy (Ovb). Textures are generally seriate and fine grained, and minerals are generally altered to serpentine, chlorite, and calcite. A) Micrograph of sample KS024 in cross-polarized light. B) Photograph of sample KS063. C) Micrograph of sample KS063 in cross-polarized light. D) Photograph of sample KS063. E) Micrograph of sample KS143 in cross-polarized light. F) Photograph of sample KS143.

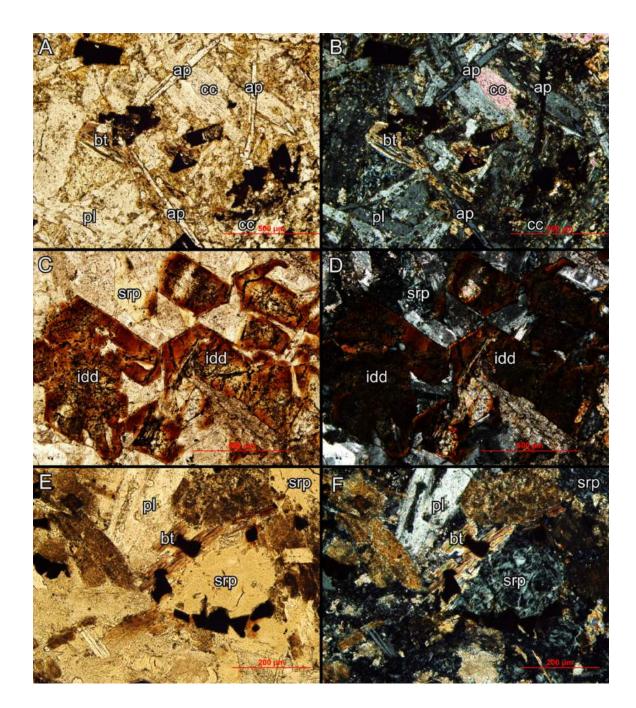


Figure 7. Representative micrographs of basalts of the Valmy Formation, in plane- and crosspolarized light. A-B) Sample KS024 showing acicular apatite and biotite in a groundmass of plagioclase with calcite. C-D) Sample KS063 showing olivine altered to iddingsite, a mixture of clay and iron oxides. E-F) Sample KS143 showing biotite and olivine altered to serpentine minerals in a clay-altered groundmass. Abbreviations: ap=apatite, bt=biotite, pl=plagioclase, cc=calcite, srp=serpentine, idd=iddingsite.

Silurian Elder Sandstone (Se)

Resting on the Valmy to the south of the Keystone window is the Silurian Elder Sandstone, an age supported by underlying cherts containing Llandovery to early Wenlock radiolaria (Table 1). The Elder Sandstone is part of the Roberts Mountains allochthon and is mapped in the Cortez Mountains to the north and at the Robert Mountains to the east (Gilluly and Masursky, 1965; Finney et al., 2000). Regionally, the Elder is quartz-rich but also contains local arkosic and micaceous yellow-brown sandstone and siltstone that grades into chert and argillite. At Keystone, the Elder is about 60 m thick and is a yellow quartz sandstone with minor feldspar grains and some white mica, with scattered calcareous beds.

The Lower Silurian Cherry Spring Chert is commonly used as a distinctive regional marker unit due its deep green color and phosphatic nodules (Holm-Denoma et al., 2011). At Keystone however the Silurian chert underlying the Elder is discontinuous and may or may not have a green color. The Cherry Spring Chert has therefore not been differentiated from the Valmy Formation. The Elder occurs on a topographic high where it rests on Valmy in the southern part of the study area (Plate 1).

Paleozoic autochthonous rocks of the slope domain

Silurian-Early Devonian Roberts Mountains Formation (Srm)

The Roberts Mountains Formation of Silurian to Early Devonian age was first described by Merriam (1940) at its type locality in the Roberts Mountains 20 km to the east of Keystone. This unit was also described by Gilluly and Masursky (1965) in the Cortez Mountains 25 km to the north of Keystone. Merriam and McKee (1976) provide a detailed review of the variety and extent of the Roberts Mountains Formation, including another occurrence on the northern slopes of the Simpson Park Mountains at Coal Canyon, only 17 km north-northeast of Keystone. The Roberts Mountains is considered a transition between the western assemblage siliciclastic sedimentary rocks and contemporaneous eastern assemblage dolomitic shelf rocks. It has similarities to the Elder Sandstone to the west but with a higher clastic calcite component, forming a north-south slope-to-basin facies limestone belt that extends over 500 km (Gilluly and Masursky, 1965; Merriam and McKee, 1976; Cook and Corboy, 2004). At Keystone, the Roberts Mountains Formation is found on the west side of the range in the southwestern part of the lower plate window (Plate 1). It crops out as a band about 700 meters long, striking east-northeast and dipping 30 degrees southeast. Its upper 60 meters is well exposed and has a gradational contact with the base of the Wenban Formation. Conodont fossil dating of the overlying lowermost Wenban returned an Early Devonian, Late Lockhovian age (Table 1). This date agrees with the upper part of the Roberts Mountains encompassing the Silurian-Devonian boundary (Merriam and McKee, 1976). In the southwest part of the study area, the Late Devonian Horse Canyon unit and the western extension of the Gund stock are found below the Roberts Mountains Formation, and therefore an obvious fault relationship. The low-angle trace of the contact between the Horse Canyon and Roberts Mountains, in conjunction with parallel bedding, indicate a thrust fault caused the juxtaposition. Rocks of the Roberts Mountains Formation are truncated to the northeast by the same thrust fault, which continues northeast and juxtaposes rocks of the Horse Canyon unit beneath limestone of the Wenban Formation. To the southwest the Roberts Mountains Formation is buried by Quaternary alluvium.

A sill related to the Gund stock intrudes the thrust fault described above, and metamorphosed the surrounding wall rock, including silty limestone of the overlying Roberts Mountains Formation. The Roberts Mountains here is bleached to white marble, but retains plane laminar bedding, typically 2-10 mm thick, and altered phosphate lenses. Away from the Gund sill and towards its upper contact with the Wenban, the Roberts Mountains Formation is typically composed of platy, dark gray silty limestone with common black phosphate lenses.

Wenban Formation

The Wenban Formation, first described by Gilluly and Masursky (1965), includes limestone of Early, Middle, and Late Devonian age, and is age correlative with parts of the Nevada Formation, Guilmette Limestone, and Devils Gate Limestone. Its type locality is at Wenban Peak in the Cortez Mountains, 25 km north of Keystone. Other formations such as the Denay, McColley, and Popovich are also partly correlative with the Wenban. As such, the Wenban has been subdivided into 8 units (Cook and Corboy, 2004; Jackson et al., 2010). Although it also represents a slope facies, the Wenban contains proportionally more carbonate and bioclastic material than the underlying Roberts Mountains Formation, suggesting its relative proximity to the Devonian-Silurian platform margin to the east (Cook and Corboy, 2004).

Detailed mapping (T. Chapin, 2017, unpublished report for U.S. Gold Corp.) identified all 8 informal units of the Wenban described for nearby Cortez (Jackson et al. 2010) at Keystone. At Keystone, the Wenban is approximately 730 m thick, which includes its unfaulted lower and upper contacts. Conodont fossil ages of the Wenban at Keystone span the Devonian from Late Lockhovian to Middle Frasnian (Table 1). The Wenban has a debris flow boundary with the underlying Roberts Mountains, mapped in the southwestern part of the Keystone window. The nature of the upper Wenban contact with the Horse Canyon unit is uncertain because of later faulting and folding, but it is likely an erosional contact, as it appears to be at least at the Cortez mine (Jackson et al., 2010). Mapping at Keystone suggests the presence of both erosional and fault contacts for the Wenban. The Wenban comprises most of the surface exposures of the 4 km² lower-plate Keystone window; the Horse Canyon is exposed along the window's perimeter and lesser parts of the interior (Plate 1) and the Roberts Mountains Formation occupies a small area in the southwest corner of the window. Bedding attitudes are strongly affected by intrusions, and bedding generally dips away from the Walti pluton creating a dome shape. Outcrops farthest from the Walti in the southern part of the window dip 20-30 degrees to the southeast.

Lithologies of the Wenban Formation are diverse across its members. It is most commonly a darkto medium-gray thick- to thin-bedded carbonaceous silty micrite. Bioturbation textures, bioclastic debris flows, and soft-sediment slumps, are more prominent in certain subunits by varying degrees. Proximal to the Walti pluton and Gund stock, the Wenban is contact metamorphosed to marble, skarnoid (metamorphism of impure limestone), and skarn (metamorphism and metasomatism by magmatichydrothermal fluids). Marbled Wenban is commonly white with light-gray wavy foliations, and has a sugary to medium-grained crystalline texture. Skarnoid in Wenban is typically fine-grained and composed of forest green diopside and/or amber-colored fine-grained garnet. Base-metal skarn mineralization occurs in the historic Keystone mine (Figure 8) along the northern margin of the Walti pluton, and features coarser and darker brown to black garnet, and sulfides, including pyrite, chalcopyrite, bornite, covellite, cuprite, and galena (Figure 9). Historic workings are also found in roof pendants of mineralized Wenban in the northwest parts of the Walti pluton. A <1 m rind of magnetite skarn is found at the southwest contact between the Walti and the Wenban (Figure 10). The Wenban also has black to red jasperoid alteration typically along contacts with the Horse Canyon or along interpreted faults, with transitions to partly decarbonatized, or sanded, pink to brown limestone.

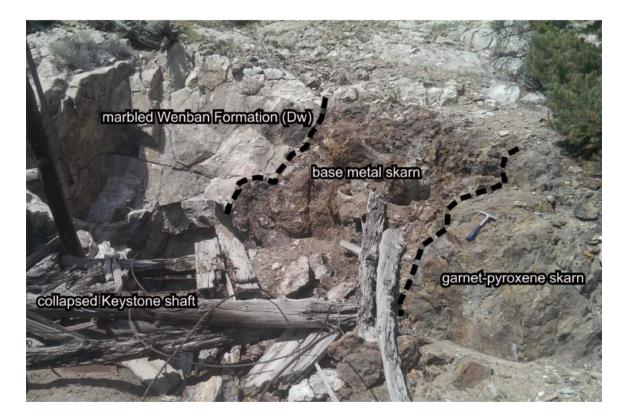


Figure 8. Photo of collapsed shaft of the Keystone mine and oxidized skarn mineralization. Photo taken where near sample KS035 of skarn mineralization. Hammer is 28 cm long.

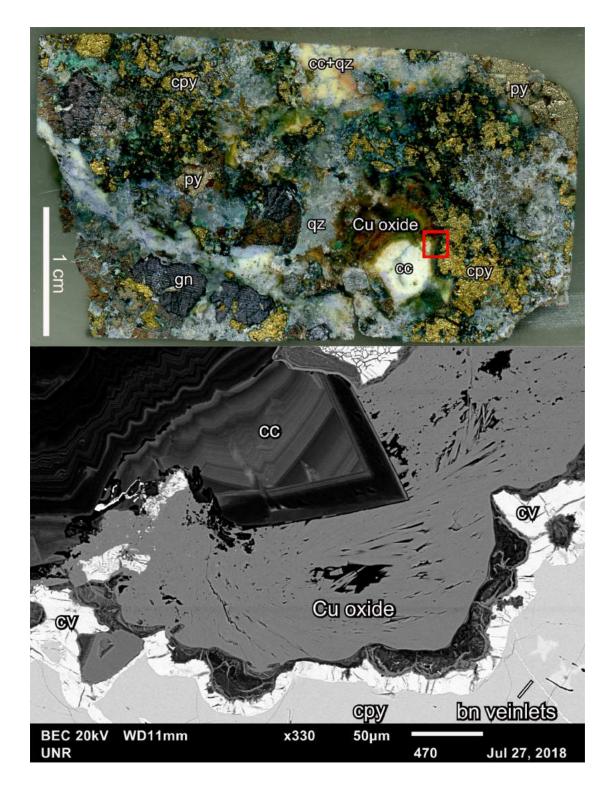


Figure 9. Photo and SEM backscattered electron image of sample KS035 from skarn mineralization at the Keystone mine. Red square indicates field of view for SEM image. Abbreviations: cc=calcite, qz=quartz, py=pyrite, cpy=chalcopyrite, bn=bornite, cv=covellite, gn=galena.



Figure 10. View south towards the Walti pluton's southwest contact with the Wenban Formation. Magnetite skarn occurs at the Wenban contact with the Walti diorite phase mingled with the Walti quartz monzonite phase. Photo taken near sample KS017 of mingled Walti diorite. Hammer is 28 cm long.

Undifferentiated Limestone/Marble in the Mud Springs Pluton (ODul)

Resting on top of the Mud Springs pluton in the east-central part of the study area are isolated 100-1000 m²outcrops of marble (ODul) and quartzite (Ovq) (Plate 1). Marble forms prominent outcrops, with the largest covering ~0.15 km². These outcrops are contained entirely within the Mud Springs pluton and are interpreted as stoped blocks of marble during the rise and emplacement of magma that formed the Mud Springs pluton. The marble is white to lightly buff-colored and coarsely crystalline. A likely candidate for the marble protolith is limestone of the Wenban, or potentially older Silurian or Ordovician carbonate such as the Lone Mountain Dolomite mapped in the Roberts Mountains to the east (Roberts et al., 1967). The quartzite is possibly derived from similar lithologies in the Valmy Quartzite.

Horse Canyon Unit (Dhc)

The Horse Canyon unit of Late Devonian age was first described by Harry Cook in the Cortez Mountains, with subdivisions detailed along the Cortez mine haul road (Cook, 2015). The Horse Canyon is temporally and lithologically correlative to the Rodeo Creek unit of the Carlin trend gold belt. The Fammenian depositional setting of the Horse Canyon is likely a marine basin that received siliciclastic material from the west (the onset of the Antler orogenic highlands) and carbonate material from the east (the drowned carbonate shelf margin; Cook, 2015). At Cortez and Keystone, the Horse Canyon transitions from basal debris flows to interbedded carbonate and quartz turbidites. The upper parts of the Horse Canyon unit, with black siltstone, claystone, and buff-colored mudstone, represent a definitive end to the Devonian carbonate deposition, after which slope-to-basin carbonate facies no longer occurred. The top of the Horse Canyon is faulted and not exposed at Keystone because of presumed Antler deformation.

The Horse Canyon unit occurs in several locations in the Keystone window. Detailed mapping (T. Chapin, 2017, unpublished report for U.S. Gold Corp.) shows both depositional and thrust contacts between the Horse Canyon and underlying Wenban. Mapping at Keystone suggests the thickness of the Horse Canyon unit is between 40 and 100 meters, similar to its ~75-meter thickness at Cortez (Cook, 2015). The Horse Canyon unit typically crops out along the perimeter of the Keystone window and in thrust-fault contact with rocks of the overlying and allochthonous Valmy Formation (Plate 1). Bedding attitudes are generally conformable with the underlying Wenban and the overlying rocks of the Roberts Mountains allochthon. Conodonts yield Late Frasnian ages, suggesting the Horse Canyon at Keystone represents the last passive margin depositional event before Late Devonian to Early Mississippian eastward thrusting during the Antler orogeny (Table 1).

Plane laminar, interbedded black chert with calcareous gray to black siltstone are typical lithologies of the Horse Canyon unit at Keystone. Contact metamorphism is widespread and altered the unit to a hard, white siliceous hornfels characterized by conchoidal fracturing. More calcareous layers alter to fine-grained, layered, lime-green calc-silicate hornfels found both above the Gund stock and the Walti pluton. Away from intrusions, fresh and non-metamorphosed Horse Canyon siltstone is pink to buffcolored. In these distal locations, the Horse Canyon fine clastic units are locally altered to jasperoid, especially along contacts with thrust faults and with the underlying Wenban.

Cenozoic rocks

Eocene conglomerates, volcaniclastic rocks, and lavas rest on the Ordovician rocks of the upper plate both to the west and east of the Keystone window (Plate 1). These Cenozoic rocks define the Paleozoic-Cenozoic unconformity in this area. The Pennsylvanian-Permian Antler overlap assemblage consisting of conglomerate and sandstone that resemble some of the Cenozoic conglomerate at Keystone do not crop out in the study area, but have been extensively mapped in the Simpson Park Mountains 10 km to the northeast and 20 km to the south (Roberts et al., 1967; Stewart and Carlson, 1976).

Tertiary Conglomerate (Tcg)

Along two ridges east of the Walti pluton and north of the Mud Springs pluton are massive outcrops of coarse pebbly sandstone and pebble to cobble conglomerate (Tcg) (Plate 1), which contain both angular and subround clasts. Clasts include chert, siltstone, sandstone, and quartzite as well as locally abundant clay-altered or silicified felsic volcanic rocks. Clasts along the western and topographically higher ridge are generally coarser and dominated by cobble-sized cherts and sandstones; on the eastern ridge clasts are gravel-sized and have a greater proportion of altered volcanic material. The eastern ridge also shows more hydrothermal alteration with limonite and clay.

The Tcg conglomerate rests on upper plate rocks, although the contact between it and diorite of the Walti pluton on the western ridge is under cover. Bedding attitudes are unclear on the western ridge because of strong orthogonal jointing and silicification. Resting on the conglomerate to the east are rhyolitic tuff and volcaniclastics, and aphyric rhyolite lava (Tvc). Here, rocks dip east but with angular unconformity on the southeast-dipping beds of underlying Paleozoic siltstone of the upper plate (Figure 11). The Tcg conglomerate is dated using LA-ICP-MS U-Pb methods on detrital zircons, with the greatest proportion and youngest population of zircons yielding an Eocene age as discussed in detail in the Geochronology section.

Figure 11. Photograph of outcrop of altered Tertiary conglomerate (Tcg), viewing north. Beds of moderately-sorted subrounded cobble conglomerate dip east and contain a mixture of siltstone, chert, and volcanic clasts. Photo taken near sample KS079 of Tertiary conglomerate. Angular unconformity with underlying Valmy is west of the photo. Hammer is 28 cm long.

Intrusive rocks

The abundant intrusive rocks mapped at Keystone are entirely of Eocene age. They include four high-level stocks (Walti, Mud Springs, Gund, and rhyolite porphyry) of intermediate to silicic composition along with abundant intermediate to silicic dikes (Plate 1). The only mafic rocks in the study area are Lower Paleozoic basalt lava and sills of the Valmy and Comus formations. A summary of igneous textures and mineral assemblages is provided in Table 2. Representative examples of intrusive rocks are provided in Figure 12 and Figure 13. Plagioclase compositions determined semi-quantitatively by SEM-EDS are provided in Figure 14.

Table 2	Table 2. Summary of igneous textures and	textures and mineral assemblages	
Code	Unit	Texture	Primary mineralogy (vol%)
Tmd	Mud Springs diorite	Seriate to porphyritic with >50% phenocrysts in a very fine-grained groundmass (0.05-0.1 mm)	40-50% plag (1-3 mm), 20-30% gm (0.05-0.1 mm, ksp >> plag + qz), 15-20% mafics (<1 mm, cpx > hbl + bt), 2-3% mt (<0.1 mm), 2-3% py (<0.1 mm), local miarolitic cavities (1-3 mm, <0.5 mm qz > cp > ksp) acc. ap, zir, cp
Tmp	M ud Springs pegnatite	Hypidiomorphic, very coarse, pegmatitic	70-80% ksp (>5 mm), 20-30% qz (>2 mm)
Tgd	Gund diorite	Hypidiomorphic equigranular to seriate, medium- to fine-grained	50-60% plag (<1 mm), 20-30% mafics (<0.5 mm, bt > hbl > cpx), 5-10% ksp (<0.3 mm), 3-5% mt (<0.05 mm), 1-5% qz (<0.3 mm), 1-2% py (<0.05 mm), acc. ap, zir
Trp	Rhy olite porphyry	Porphyritic with 15-25% phenocrysts in micro- to cryptocrystalline groundmass	70-80% gm (<0.05 mm, ksp > qz), 10% plag (1-4 mm), 3-4% qz (1-2 mm), 3- 6% san (0.5-2 mm), 2-5% mafics (<1 mm, bt > hbl), acc. mt, zir
Twq	Walti quartz monzonite	Hy pidiomorphic equigranular to seriate to porphyritic with >60% phenocrysts in fine-grained to aplitic groundmass	20-40% plag (2-5 mm), 30-45% ksp (<2 mm), 10-20% qz (<1 mm), 5-10% bt (<1 mm), 5-10% hbl + cpx + mt (<0.5 mm in 1-2 mm glomerocrysts), 0-30% fine-grained to aplitic gm (0.01 to 0.2 mm) acc. ap, zir, tit, ep
Twd	Walti diorite	Porphyritic with 15-35% phenocrysts in a very fine- grained groundmass (0.01-0.1 mm), variable due to mixing and disequilibrium	65-85% fine-grained gm (0.01-0.1 mm plag> bt> hbl > mt) 20-25% plag (1-5 mm), 5-10% hbl + cpx + mt (<0.5 mm in 1-2 mm glomerocrysts), 1-2% bt (<1 mm), 1-2% mt (<0.1 mm), acc. ap, zir
Twp	Walti intermediate porphyritic dikes	Porphyritic with 20-40% phenocrysts in aplitic to microcrystalline groundmass (<0.05 mm), variable due to mixing and disequilibrium	60-80% gm, 5-15% plag (1-4 mm), 5-10% ksp (0.5-4 mm), 1-5% qz (<1 mm), 1-3% hbl (<1 mm), 1-3% bt (<1 mm) 1-5% glomerocrysts (bt + hbl + cpx + mt, <0.5 mm in 1-5 mm clumps), acc. mt, ap, ep, zir
Tta	T rachy andesite dikes	Porphyritic with 10-15% phenocrysts in micro- to cryptocrystalline groundmass	85-90% gm, 5-10% plag (1-2 mm and microlites), 3-4% oxidized and altered mafics (<0.2 mm), 1% mt (<0.2 mm), acc. ap, zir
Tvc	Volcaniclastics and aphyricrhyolite	Pyroclastic (polymict) to aphyric to sparsely porphyritic with <5% phenocry sts in micro- to cryptocrystalline groundmass	>90% clay-altered to silicified gm, <5% clay-altered fsp + bt (<0.5 mm), <1 mm qz veins, local chert and quartzite subangular pebble clasts
Ta, Tad	Andesite lavas of McClusky Creek, and dikes	Porphyritic with 40-45% phenocrysts in cryptocrystalline to locally glassy groundmass	55-60% gm, 30-35% plag (bimodal, 0.5-2 mm phenocrysts, 0.01-0.1 mm microlites), 4-7 % opx > cpx (0.5-1 mm), 1-5% hbl (0.2-1 mm), 1% mt (<0.5 mm), acc. ap
T da, T dad	Dacite agglomerate and dikes	Porphyritic with 25-30% phenocrysts in cryptocrystalline groundmass	70-75% gm, 25-30% plag (<1 mm), 1-3% mafics (<0.5 mm, cpx > hbl), 1% mt (<0.2 mm), acc. ap, zir
COcb , Ovb	Basalts of the Comus and Valmy formations	Hypidiomorphic equigranular to seriate, medium- to very fine-grained, breccias, hyaloclastites, pillows	30-50% plag (<1 mm), 20-30% altered olivine (<0.5 mm), 10-30% mt + ilm (<0.5 mm), 1-5% bt (<0.3 mm), 5-10% acicular ap (<1 mm length), 0-20% calcite (speckled to coarse/massive)
Abbrev bt=bic	Abbreviations: gm=groundmass, fsp=feldspar, pla bt=biotite, ap=apatite, zir=zircon, ep=ep idote, mt	fsp=feldspar, plag=plagioclase, ksp=K-feldspar, san=sa 1, ep=epidote, mt=magnetite, ilm=ilmenite	Abbreviations: gm=groundmass. fsp=feldspar, plag=plagioclase, ksp=K-feldspar, san=sanidine, qz=quartz, cp x=clinop y roxene, op x=orthop y roxene, hbl=hornblende, bt=biotite, ap=apatite, zir=zircon, ep=epidote, mt=magnetite, ilm=ilmenite

assemblage
ral
and mineral
and 1
textures
igneous
of
Summary
i
Table

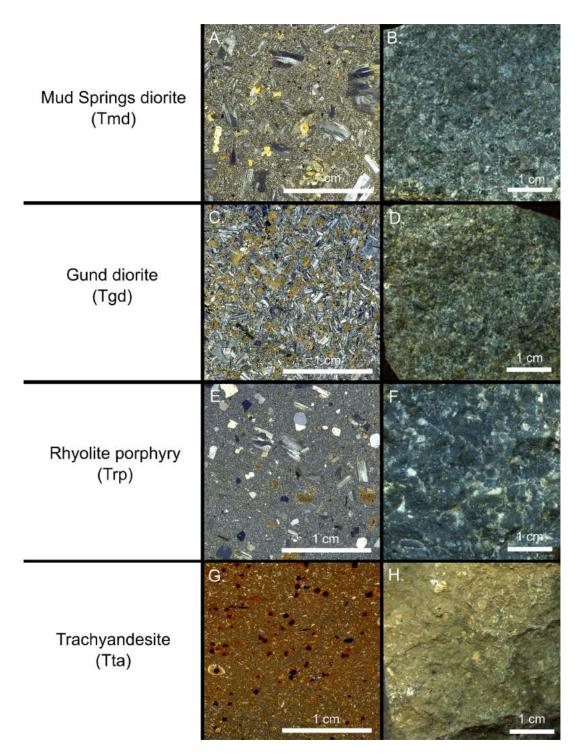


Figure 12. Representative micrographs and photographs of Eocene intrusive units, excluding the Walti pluton. A) Micrograph of the Mud Springs diorite (sample KS003) in cross-polarized light. B) Photograph of the Mud Springs diorite (sample KS003). C) Micrograph of the Gund diorite (sample KS079) in cross-polarized light. D) Photograph of the Gund diorite (sample KS079). E) Micrograph of the rhyolite porphyry (sample KS097) in cross-polarized light. F) Photograph of the rhyolite porphyry (sample KS098). G) Micrograph of the trachyandesite (sample KS025) n cross-polarized light. H) Photograph of the trachyandesite (sample KS021).

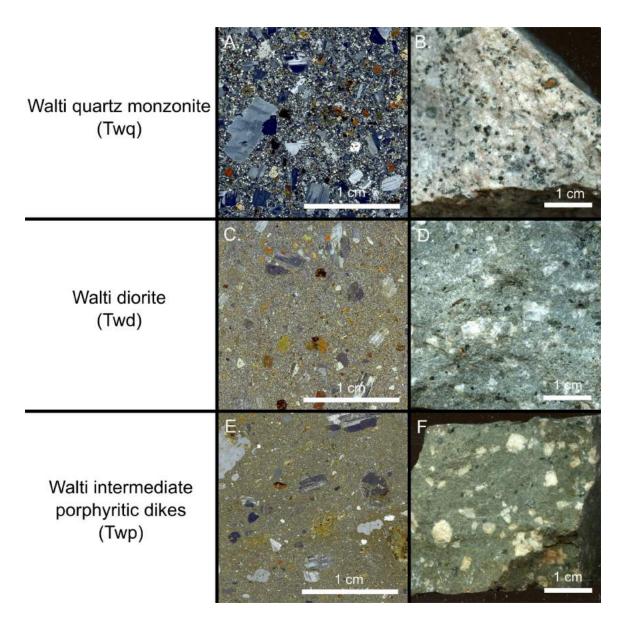


Figure 13. Representative micrographs and photographs of intrusive units of the Walti. A) Micrograph of the Walti quartz monzonite (sample KS007) in cross-polarized light. B) Photograph of the Walti quartz monzonite (sample KS007). C) Micrograph of the Walti diorite (sample KS086) in cross-polarized light. D) Photograph of the Walti diorite (sample KS068). E) Micrograph of the Walti intermediate porphyritic dikes (sample KS095) in cross-polarized light. F) Photograph of the Walti intermediate porphyritic dikes (sample KS115).

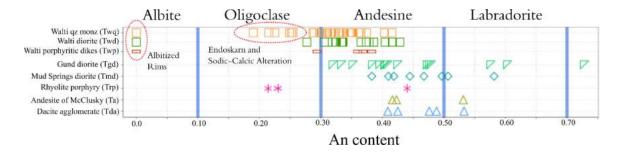


Figure 14. Anorthite compositions of plagioclase phenocrysts determined using semi-quantitative SEM-EDS. See text for discussion.

Mud Springs diorite (Tmd)

The 1 km² Mud Springs diorite pluton (Tmd) is located in the east-central part of Keystone (Plate 1). Fault-bounded to the west by upper-plate rocks, the Mud Springs pluton is sill-like and forms an E-W oval map pattern that mimics the gently east-dipping topography. A rhyolite porphyry plug (Trp) cuts the Mud Springs pluton's northwest corner. The east-west striking Walti porphyritic intermediate dikes (Twp) also cut the pluton. Resting on the diorite are the aphyric rhyolite and volcaniclastics unit (Tvc) and dacite agglomerate (Tda). Also resting on top of or within the pluton are several large isolated xenoliths of marble (ODul) and quartzite (Ovq).

The Mud Springs pluton is hypidiomorphic seriate to weakly porphyritic with >50% phenocrysts in a very fine-grained gray to dark green groundmass (Figure 12A-B). Its phenocryst assemblage includes 1-3 mm plagioclase, <1 mm clinopyroxene, hornblende, and biotite (Table 2). Plagioclase compositions determined by SEM-EDS are andesine to labradorite (An₃₈₋₅₈), similar to compositions from the Gund diorite but differing from diorite of the Walti pluton (Figure 14). Where the texture is more porphyritic, the very fine-grained groundmass tends to be K-feldspar-rich with lesser amounts of quartz and plagioclase. Groundmass crystals are generally 0.01-0.3 mm. Phenocrysts of K-feldspar are rare and no larger than 1 mm. Fine-grained magnetite and cubic pyrite are common in the pluton, and primary pyrite is generally more prevalent (1-2%) in less-altered rocks.

Mafic minerals occur as phenocrysts and in clumps or 1-2 mm glomerocrysts. Glomerocrysts consist of pyroxene cores mantled by biotite and as unoriented aggregates of pyroxene, amphibole, biotite,

and plagioclase. Millimeter- to centimeter-size miarolitic cavities are found throughout the Mud Springs pluton and typically contain intergrowths of quartz and epidote with minor orthoclase, as well as open space (Figure 15A-B).

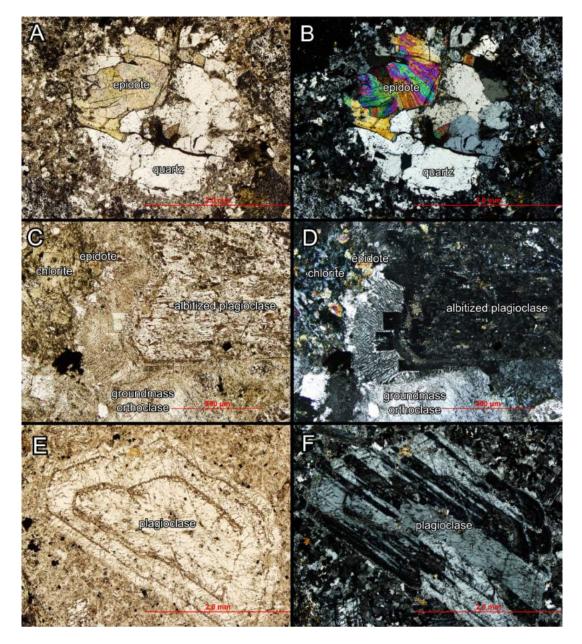


Figure 15. Micrographs of the Mud Springs diorite in plane- and cross-polarized light. A-B) Sample KS102. Miarolitic cavities with quartz and epidote are locally abundant in the Mud Springs pluton. C-D) Sample KS104. Plagioclase is altered to sericite, epidote, and albite, and has an albitized rim which has rectangular growths into groundmass orthoclase. The orthoclase displays an unusual myrmekitic or vermicular intergrowth texture with quartz. E-F) Plagioclase phenocryst showing three events producing sieve-textured rims (the outer rim and two inner layers). Plagioclase is locally altered to sericite.

Unaltered hornblende or biotite was not found in the Mud Springs pluton. In the least-altered samples, these mafic minerals are typically completely altered to chlorite, with or without epidote. Identification of hornblende is possible where vestiges of unaltered hornblende remain. Biotite is identified by its typical form and cleavage. Clinopyroxene is generally unaltered but can be weathered and fragmented as well as oxidized.

Plagioclase phenocrysts in the Mud Springs pluton show varying degrees of alteration to albite, sericite, calcite, and epidote. Intensely altered plagioclase is albitized and has patches of calcite with finegrained epidote. These features combined with alteration of mafic minerals to chlorite and calcite indicate propylitic alteration. Intense albitization of plagioclase is also accompanied by recrystallization of the groundmass to interlocking and interstitial orthoclase. In these samples, the groundmass shows angular, skeletal quartz textures within orthoclase. The orthoclase also displays a myrmekitic texture (Figure 15C-D). Plagioclase phenocrysts commonly have sieve-textured rims, suggesting magma disequilibrium and/or resorption during the crystallization history (Figure 15E-F). The abundance of orthoclase in the groundmass further supports the possibility of disequilibrium between calcic plagioclase phenocrysts and more evolved potassium-rich late melt.

Mud Springs pegmatite (Tmp)

Throughout the Mud Springs pluton are coarse-grained pegmatites (Tmp) as centimeter to meter size inclusions, as well as outcrops that span tens of meters along strike (Figure 16). The largest outcrops of pegmatite are located on the west side of the exposed pluton (Plate 1). Inclusions of pegmatite decrease in size and abundance away from the large outcrops, although they occur sporadically throughout the pluton. Pegmatite mineral assemblages are typically restricted to graphic-textured intergrowths of quartz (2-5 mm) and orthoclase (>1 cm). Quartz crystals are elongated and sinuous in a matrix of coarse orthoclase crystals (Figure 17).

Figure 16. Photos of outcrops of the Mud Springs pegmatite. A. Example of a larger outcrop surrounded by diorite. B. Example of a smaller pegmatite inclusion in the diorite, which are common throughout the Mud Springs pluton. Hammer is 28 cm long.

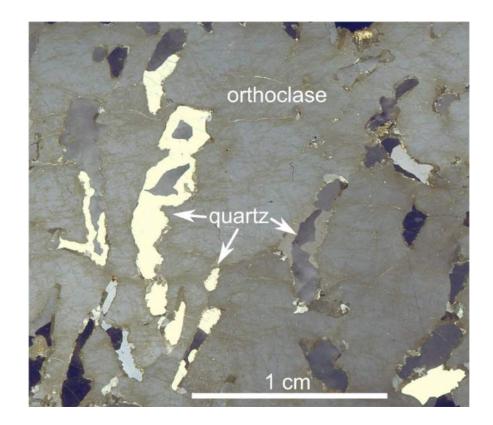


Figure 17. Micrograph of the Mud Springs pegmatite (sample KS110) in cross-polarized light. Coarse elongate quartz grains are in a matrix of very coarse orthoclase.

Gund diorite (Tgd)

About 500 m to the south of the Walti pluton is the Gund stock (Tgd), which is compositionally a diorite and has an outcrop exposure of about 0.36 km² (Plate 1; Figure 18). The Gund has primary intrusive contacts with the Wenban and Horse Canyon formations. A small (<0.02 km²) sill-like extension of the Gund stock is well exposed along the western range front fault about 1 km to the west, just east of the Gund Ranch (Plate 1). The Gund stock generally has a lopolith shape with a concave-upward roof where it intruded rocks of the Horse Canyon unit. A thrust separating rocks of the Roberts Mountains allochthon (RMA) is exposed immediately above rocks of the Horse Canyon unit, less than 50 m above the upper contact of the Gund; here, the RMA features cataclasized chert and siltstone (Figure 19). Outcrops of calcareous siltstone and mudstone of the Horse Canyon unit adjacent to the Gund are recrystallized to calcsilicate and siliceous hornfels. The Wenban adjacent to the Gund is recrystallized to marble and contains fine-grained green calcic garnet, but no mineralized skarn was found in this area.

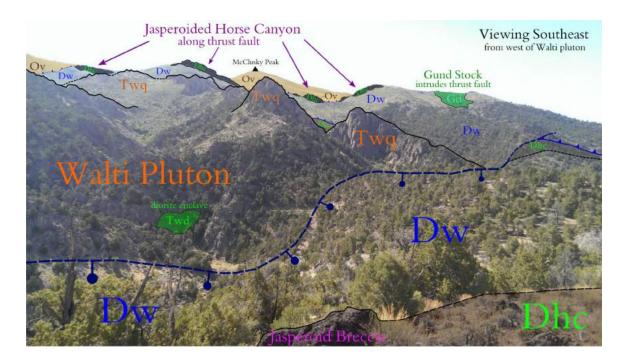


Figure 18. Labeled photograph of the Keystone window looking southeast across the Walti pluton toward the Gund diorite, lower-plate carbonates, and along the skyline, upper-plate rocks of the Valmy Formation. Labels are same as map units.

Figure 19. Photograph of cataclasized and sheared chert and siltstone along the thrust fault separating Devonian Horse Canyon (Dhc) and overlying Ordovician Valmy (Ov). Sample was taken <50 m from the upper contact of the Gund stock (Tgd).

The Gund diorite is hypidiomorphic equigranular to seriate, and medium to fine grained (Figure 12C-D). The finer-grained groundmass texture, with minerals rarely exceeding 1 mm, and a lack of phenocrysts in the Gund diorite readily differentiate it from the Walti diorites (Table 2). Plagioclase is the most abundant mineral, and it is generally ≤ 1 mm, with a few grains as large as 2 mm. Plagioclase compositions determined by SEM-EDS are andesine to labradorite (An₃₂₋₇₃), a departure from the strictly andesine compositions of plagioclase in rocks of the Walti pluton (Figure 14) and consistent with a relatively more mafic composition. Mafic minerals include biotite, hornblende, and clinopyroxene, all ≤ 0.5 mm. Interstitial quartz and orthoclase <0.3 mm form the fine-grained groundmass, which makes up <15% of the rock. Local clumps of epidote and quartz are also common. Magnetite is common in the groundmass and associated with other mafic minerals. Outcrops with little oxidation have as much as 1-2% disseminated pyrite.

Alteration of mafic minerals to chlorite is common throughout the Gund stock, and biotite and hornblende generally alter more readily than clinopyroxene (Figure 20A-B). Plagioclase is commonly dusted with sericite and clay. Pervasive alteration of mafic minerals to actinolite is common along margins of the stock adjacent to marble of the Wenban (Figure 20C-D). Intense endoskarn alteration occurs at the southern margin of the Gund towards its upper contact adjacent to hornfels of the Horse Canyon unit (Figure 21). The mineral assemblage of the endoskarn is simplified here and consists of bleached feldspars, abundant fine-grained diopside, and titanite. At the eastern margin of the Gund is an outcrop with clayaltered mafic minerals, heavily sericitized plagioclase, and intense oxidation.

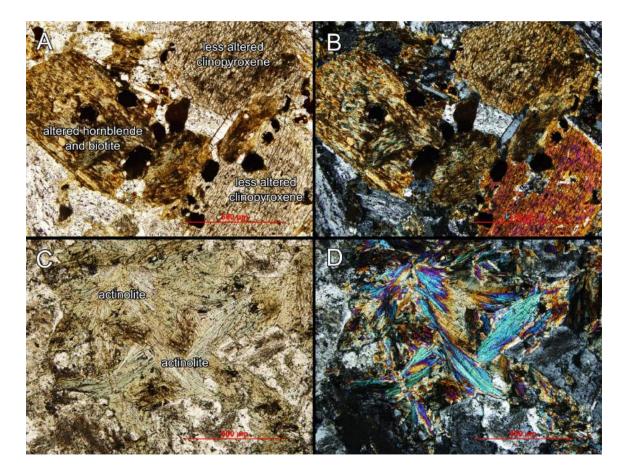


Figure 20. Micrographs of the Gund diorite in plane- and cross-polarized light. A-B) Sample KS076. Typical alteration observed in the Gund, featuring hydrous mafic minerals hornblende and biotite altering to chlorite while clinopyroxene is relatively unaltered. Opaques are oxidized pyrite and magnetite. C-D) Sample KS075. Mafic minerals have altered to acicular actinolite and local tremolite in an outcrop adjacent to marbled Wenban.

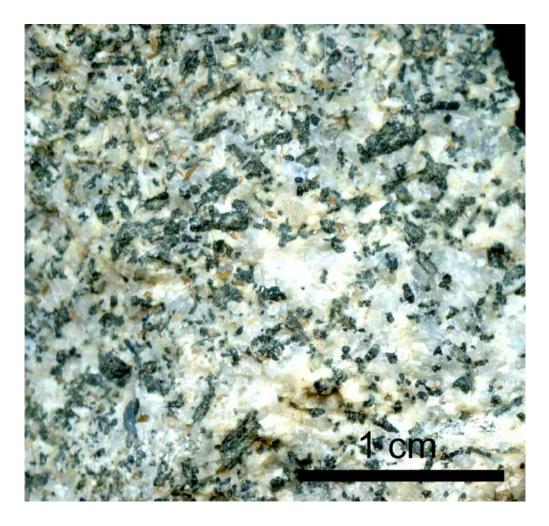


Figure 21. Photograph of the Gund diorite (sample KS072) with endoskarn alteration. Light gray crystals are plagioclase, dark green are diopside, amber-colored are titanite.

Walti pluton – quartz monzonite (Twq)

The Walti pluton is the largest intrusive body at Keystone, covering approximately 4.1 km² and having ~600 m of exposed vertical extent (Plate 1). The Walti pluton was compositionally subdivided for mapping purposes into a light to medium gray quartz monzonite to granodiorite (Twq) (Figure 13A-B), and a dark gray diorite (Twd) (Figure 13C-D), the latter discussed later. The two main subtypes along with other more localized compositions indicate that the Walti is a composite pluton of intermediate to felsic composition. Textures of the quartz monzonite range from strongly porphyritic with phenocrysts >5 mm in a fine- to medium-grained matrix, to coarse-grained hypidiomorphic equigranular textures at greater depth

(Figure 22; Table 2). The Walti pluton intrudes Devonian calcareous sedimentary rocks of the Wenban and Horse Canyon formations, thus forming the core of the Keystone carbonate window. The pluton is roofed by chert, mudstone, and siltstone of the Roberts Mountains allochthon (RMA) on its eastern margin. Northeast-striking high-angle normal faults down dropped the Walti towards the northwest, in a stepped fashion. The geomorphology associated with the Walti pluton is strongly influenced by the NE normal faults as well as by high-temperature sodic-calcic hydrothermal alteration, which made the rock more resistive to weathering. Major, young, range-bounding NNE-striking, WNW-dipping normal faults place the RMA and Eocene volcaniclastics against the Walti pluton along its northwestern margin. Isolated roof pendants of Wenban-derived marble and skarn rest on the northwestern part of the pluton, whereas the historic Keystone mine copper skarn occurs along the steep northern contact between the Walti and the Wenban Limestone.

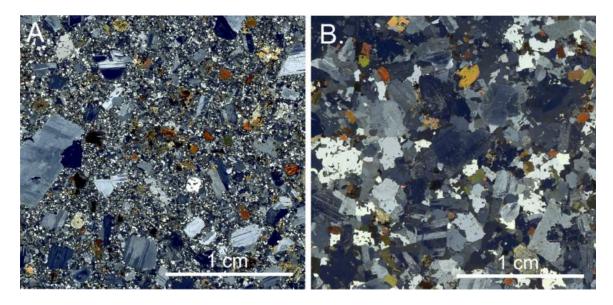


Figure 22. Micrographs of the Walti quartz monzonite, in cross-polarized light. A) Sample KS007 from outcrop has typical porphyritic texture found across all outcrops of the Walti quartz monzonite phase. B) Sample KS137 from drill core at 530 m depth has coarse-grained hypidiomorphic texture.

The most common phenocryst assemblage in the Walti pluton quartz monzonite (Twq) consists of 3-5 mm plagioclase, ≤ 1 mm biotite, and either ≤ 1 mm clinopyroxene as augite or ≤ 1 mm green hornblende, rarely both. Magnetite occurs only with mafic phenocrysts and not in the groundmass. Accessory phases include zircon, apatite, and titanite. Medium- to fine-grained quartz and orthoclase make up the

groundmass and may occur as ≤ 1 mm phenocrysts. Plagioclase phenocrysts typically have oscillatory zoning. Semi-quantitative feldspar compositions were determined by SEM-EDS are dominantly and esine as An₃₀₋₄₁ excluding samples affected by albite, endoskarn, or sodic-calcic alteration (Figure 14).

Different phases within the quartz monzonite can be identified based the presence, size, and abundance of mafic minerals, such as those with or without coarse biotite phenocrysts, and those with only hornblende or pyroxene. Variations in texture also distinguish different phases of Twq. A hornblende-rich phase tends to occur towards the northwest, and a fine-grained biotite phase occurs only in the southeast near the inferred contact with the RMA, the latter representing the uppermost part of the quartz monzonite. All outcrops of the Walti are porphyritic with notably larger plagioclase phenocrysts than other phenocrysts, but a sample collected from drill core at 530 m depth was coarse-grained and equigranular.

Mafic, 1-2 mm glomerocrysts or autoliths regularly appear within the quartz monzonite (Figure 23A-B). Glomerocrysts typically have a core of clinopyroxene, granular magnetite, and apatite, and are mantled by biotite and rarely by patchy hornblende. Anhedral titanite occasionally occurs in the glomerocrysts. The clinopyroxene in the glomerocrysts tended to alter, oxidize, and/or weather more commonly than phenocrystic clinopyroxene, suggesting differing compositions and crystallization histories between the two. Other less common styles of glomerocrysts are mixed aggregates of hornblende and clinopyroxene, less commonly with biotite.

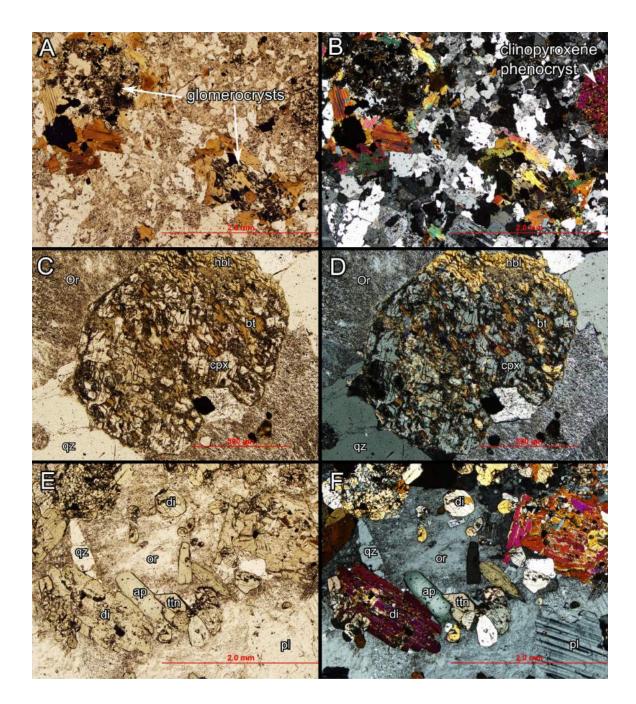


Figure 23. Micrographs of the Walti quartz monzonite in plane- and cross-polarized light. A-B) Sample KS060. Glomerocrysts in the Walti quartz monzonite are common and cored by clinopyroxene with magnetite and apatite, mantled by biotite. Clinopyroxene in the core commonly was oxidized and altered before other mafic minerals. Also shown is a clinopyroxene phenocryst that shares no features with the glomerocryst, suggesting it had a different crystallization history. C-D) Sample KS137. Clinopyroxene has altered to patchy hornblende and biotite, possibly due to late magmatic volatile exsolution causing deuteric alteration. E-F) Sample KS010. Endoskarn alteration of the Walti quartz monzonite features diopside, titanite, and apatite. Coarse and interstitial orthoclase, plagioclase, with lesser quartz make up the matrix. Abbreviations: qz=quartz, or=orthoclase, hbl=hornblende, bt=biotite, cpx=clinopyroxene, di=diopside, ap=apatite, ttn=titanite, pl=plagioclase.

The most common alteration style of the Walti quartz monzonite and granodiorite consists of chlorite and minor epidote replacement of primary mafic minerals combined with minor sericite dusting of plagioclase and albitization of plagioclase rims. Interstitial 1 mm clusters, likely filled or partly filled miaroles, are common and not associated with a specific alteration assemblage. The clusters are comprised of euhedral quartz, epidote, and rarely with titanite. Clinopyroxene may show deuteric alteration to patchy light-green amphibole, but the distribution across samples or even within a single sample does not appear to follow a pattern (Figure 23C-D). More intense sodic-calcic alteration occurs in the Walti, with pyroxene altered to epidote and calcite, andesine altered to oligoclase, and an increase in titanite in the groundmass.

A few outcrops of Twq in contact with marble exhibit endoskarn alteration, with a simplified mineral assemblage of diopside, titanite, apatite, and coarse interlocking plagioclase and orthoclase (Figure 23E-F). Inboard of the southeast margin of the pluton are abundant 1-10 mm sheeted garnet veins striking N-S and dipping west (Figure 24). Diopside also occurs in these veins and as disseminated fine-grained crystals in the groundmass. The contact with wall rock here is obscured by talus in a steep drainage. Two localities in the northwest part of the pluton show intense acidic hydrothermal alteration, wherein feldspars are altered to illite and/or kaolinite with a silicified groundmass. The locality southwest of the Keystone mine has quartz veins with weak mineralization including galena but is generally oxidized (Figure 25).

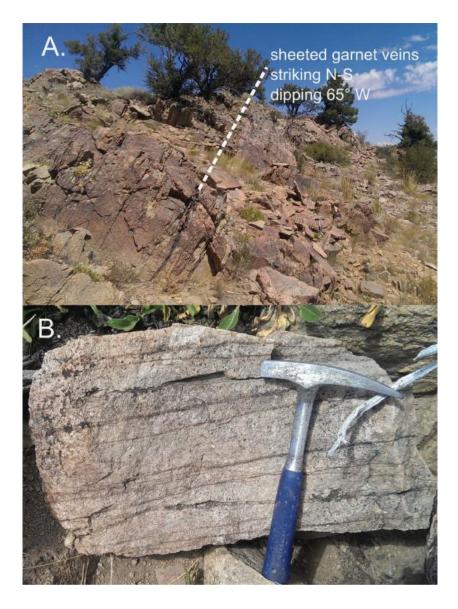


Figure 24. A) Photograph of sheeted garnet veins in the Walti quartz monzonite with N-S orientation and dipping 65° west. Photo taken near sample KS059, viewing north. B) Closer view of garnet veins, typically 1-10 mm wide. Hammer is 28 cm long.

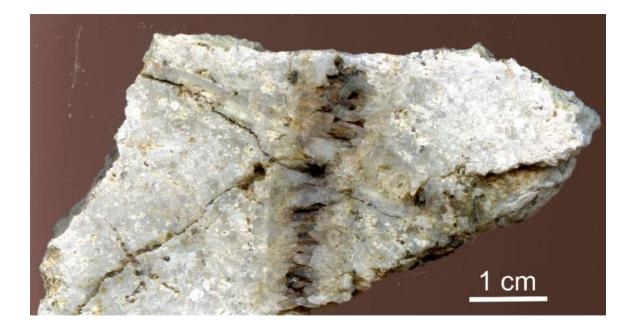


Figure 25. Photograph of hydrothermally altered and bleached Walti quartz monzonite (sample KS030). Feldspars have been altered to illite and kaolinite and groundmass partly silicified. Vein has euhedral comb quartz with weak local sulfide mineralization such as galena (not shown) that is now mostly oxidized.

Walti pluton – diorite (Twd)

A slightly more mafic quartz diorite to monzonite phase (Twd) crops out in irregular zones within the interior of the Walti pluton and as larger bodies on the pluton's eastern and uppermost margin (Plate 1). This diorite appears as outcrops surrounded by quartz monzonite with soft and partly mingled contacts (Figure 26), and as a border phase in contact with Paleozoic sedimentary rocks. Small, round diorite enclaves from 5 to 10 cm diameter commonly occur within the quartz monzonite (Figure 27). At the eastern margin, the diorite phase extends past the thrust fault bounding the lower plate and intrudes rocks recrystallized to hornfels in the Roberts Mountains allochthon.

The Walti diorite is typically finer grained and darker in color than the quartz monzonite and it contains sparse and smaller phenocrysts (Figure 13C-D). Its mineral assemblage includes 3-5 mm plagioclase, ≤ 1 mm pyroxene, ≤ 1 mm biotite, in a fine-grained groundmass of plagioclase and lesser biotite, pyroxene, orthoclase, magnetite, and rare quartz (Table 2). Plagioclase composition by SEM-EDS is andesine, typically An₃₀₋₄₂, overlapping with plagioclase compositions from the quartz monzonite phase

(Figure 14). Differing texture, color, and amount of quartz reliably distinguish the Walti quartz monzonite and the Walti diorite. Another key difference between the two units is the presence of magnetite in the diorite's groundmass, which is lacking in the quartz monzonite groundmass.

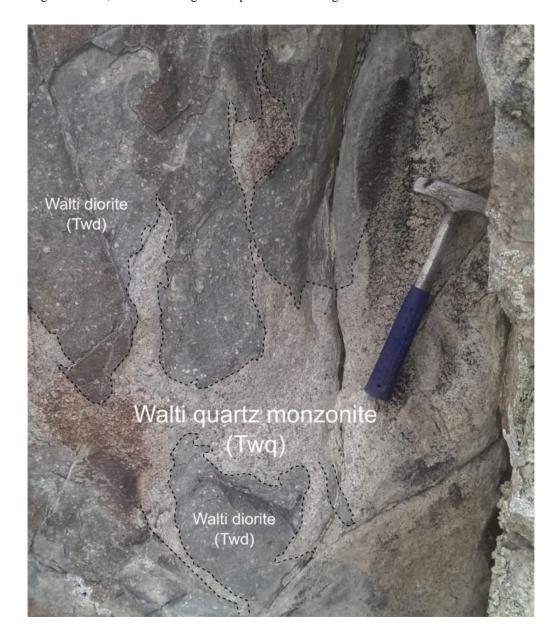


Figure 26. Photograph of typical mingled contact between the Walti diorite and Walti quartz monzonite. Patterns of mingling suggest the lighter and more felsic magma intruded and fragmented the darker more mafic magma. Contacts are diffusive and rounded, indicating the mafic magma was still partly molten when intruded by quartz monzonite magma. Hammer is 28 cm long.

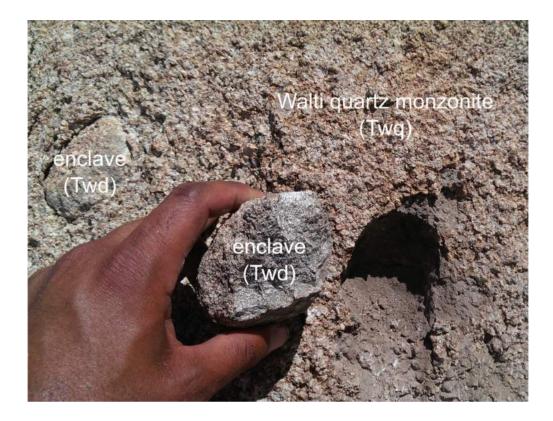


Figure 27. Photograph of example of the Walti diorite occurring as a hand-sized enclave within the Walti quartz monzonite, plucked from the outcrop. Another enclave is visible in the upper left

Discontinuous diorite bodies on the eastern margin of the Walti pluton crop out in patches that are generally >0.2 km² and are, to some extent, variable in terms of mineralogy, texture, and alteration. These differences suggest slight variation in their crystallization histories and/or variable amounts of magma mixing/mingling and disequilibrium. In particular, the diorite closest to McClusky Peak along the northsouth ridge features >1 cm orthoclase megacrysts (Figure 28) not observed in other diorite bodies.

Glomerocrysts typical of the quartz monzonite (i.e. composed of clinopyroxene, magnetite, and apatite, mantled by biotite), appear less commonly in the diorite. A diorite enclave in the pluton's southeast side has orthopyroxene mantled by clinopyroxene, plagioclase, and biotite. The same sample also has intensely resorbed quartz phenocrysts (Figure 29A) suggesting disequilibrium and mingling with the quartz monzonite phase. More common are randomly oriented aggregates of mafic minerals. Rarely, xenocrystic quartz is mantled by mafic minerals like biotite and hornblende (Figure 29).

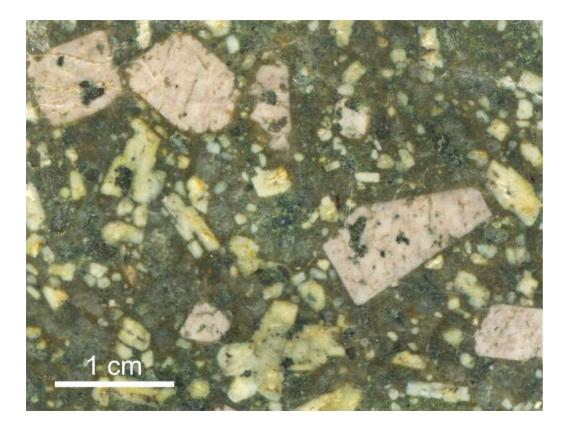


Figure 28. Photograph of the Walti diorite (sample KS087, slabbed) from an outcrop with unusual pink orthoclase megacrysts. White-tan phenocrysts are plagioclase, smaller gray round phenocrysts are quartz. Dark inclusions in the orthoclase are chloritized biotite.

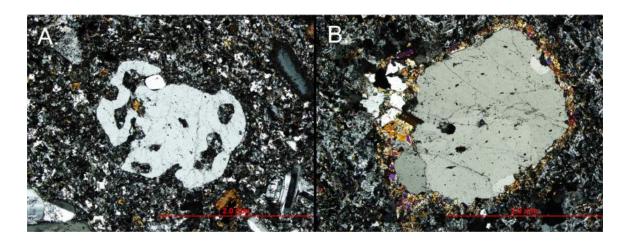


Figure 29. Micrographs of the Walti diorite in cross-polarized light showing textures compatible with magma mixing and disequilibrium. A) Sample KS068, quartz phenocryst with poor integrity and embayments. B) Sample KS067, quartz phenocryst mantled by fine-grained mafic minerals including clinopyroxene, hornblende, and biotite.

Alteration of the Walti diorite matches that of adjacent quartz monzonite. Hornblende and biotite commonly are altered to chlorite, and pyroxene was altered to epidote and actinolite. More calcic and/or endoskarn alteration proximal to marble resulted in high-temperature assemblages containing epidote, diopside, titanite, calcite, and garnet, including rare vesuvianite.

Walti porphyritic intermediate dikes(Twp)

East of the Walti pluton are intermediate porphyritic dacite and andesite dikes (Twp) that cut Paleozoic allochthonous rocks and continue farther east where they cut the Mud Springs pluton (Plate 1). Outcrops are relatively isolated, and dikes are highly variable in terms of their phenocryst assemblage. Generally, outcrops of dikes are traced for only a few 10s of meters along strike. Dikes are generally more altered than their surrounding wall rocks and weather recessively, thus the nature and geometry of their contacts are typically obscure. One dike that cuts the west flank of the Mud Springs pluton is oriented eastwest and contains flow features expressed by phenocryst-poor margins and a phenocryst-rich center.

The mineral assemblages in Walti porphyritic dikes are highly variable, but they all share a similar texture of relatively sparse (20-40%) and coarse (1-4 mm) phenocrysts set in an aplitic to microcrystalline groundmass (Figure 13E-F). Phenocryst assemblages generally include plagioclase, orthoclase, quartz, hornblende, and/or biotite in varying amounts and sizes (Table 2). Plagioclase compositions approximated by SEM-EDS are andesine (An₂₉₋₃₈), overlapping with compositions from the Walti pluton (Figure 14). Relatively mafic glomerocrysts as 1-5 mm clumps of biotite, hornblende, clinopyroxene, and magnetite are common. Accessory minerals include magnetite, apatite, epidote, and zircon.

Alteration is typically intense across all dike outcrops, bleaching rocks to a tan color and causing them to crop out poorly. Only one occurrence had relatively fresh hornblende. Otherwise, biotite and hornblende are oxidized and altered to chlorite, epidote, and/or calcite. Clinopyroxene where present is typically unaltered. Feldspars can be sericite dusted but are commonly altered to calcite and epidote. Quartz and feldspar phenocrysts commonly have embayments and resorbed rims with sieve textures or alteration to mafic minerals (Figure 30), respectively, suggesting magmatic disequilibrium.

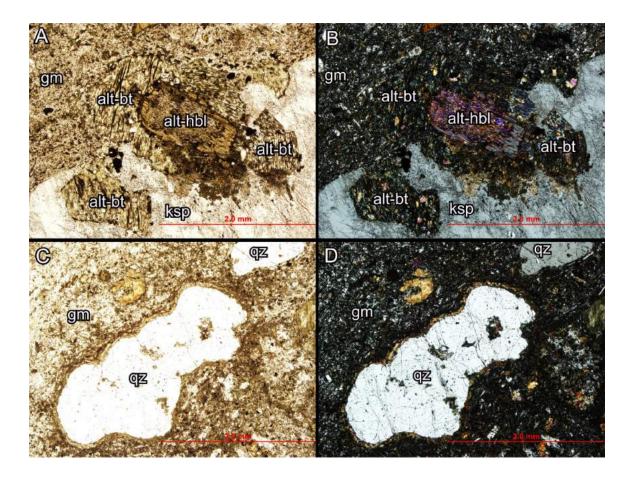


Figure 30. Micrographs of the Walti intermediate porphyritic dikes. A-B) Sample KS095 in planeand cross-polarized light. The rim of a K-feldspar megacryst is resorbed and altered to mafic minerals biotite and hornblende, which are now mostly altered to chlorite and sericite. C-D) Sample KS095 in plane- and cross-polarized light. Quartz phenocryst rims are resorbed and altered to clinopyroxene and chlorite. The textures in (A-D) are compatible with magma disequilibrium, and suggest the phenocrysts were transported in a relatively mafic melt.

The nomenclature of "Walti porphyritic intermediate dikes" was assigned because of the similarities in texture and phenocryst assemblage with the Walti pluton. Textures are porphyritic with phenocrysts in an aplitic to microcrystalline groundmass. Plagioclase phenocrysts are sparse and typically 1-5 mm, a similar size and distribution of plagioclase in the Walti pluton, in contrast with the smaller and crowded plagioclase phenocrysts of the Mud Springs pluton and nearby andesite and dacite lavas. Another set of dikes 1 km to the north that cut the Valmy and Comus formations feature smaller and abundant feldspar phenocrysts very similar to the andesite lavas of McClusky Creek. Plagioclase compositions in the Walti porphyritic intermediate dikes determined by SEM-EDS are andesine (An₂₉₋₃₈), similar to those of the

Walti and unlike the more anorthitic plagioclase of the Mud Springs pluton or adjacent andesite lavas. Quartz (<1 mm) and K-feldspar (0.5-4 mm) phenocrysts, are present in the Walti porphyritic intermediate dikes and are not observed as phenocrysts in the Mud Springs pluton or adjacent andesite and dacite lavas. Finally, the outcrops of dikes with these characteristics only occur east of the Walti pluton and therefore, above it, however they do not cut any of the phases of the Walti pluton itself. These factors suggest the Walti porphyritic intermediate dikes are related to the magmatic systemof the Walti pluton.

Rhyolite porphyry (Trp)

In the central part of the study area is a rhyolite porphyry (Trp) exposed over 0.2 km². The rhyolite porphyry cuts the Mud Springs pluton to the south and upper plate Paleozoic sedimentary rocks to the north (Plate 1). Prominent joints in the rhyolite strike east-west and are near vertical. Flow-banding and interstitial glass were not observed. The restricted extent, lack of obvious flow lobes and other lava features, and relatively round profile suggest this rhyolite is a steep-sided plug-shaped intrusion and not a lava flow or flow dome.

The Trp rhyolite is porphyritic with 15-25% phenocrysts in a micro- to cryptocrystalline groundmass (Figure 12E-F). Phenocrysts include 1-4 mm plagioclase, 1-2 mm quartz, 0.5-2 mm sanidine, and <1 mm hornblende and biotite (Table 2). Plagioclase composition data by SEM-EDS is sparse but ranged from oligoclase to andesine (Figure 14). Where identifiable, the groundmass is dominantly composed of K-feldspar with less abundant quartz. Less altered rhyolite has a dark gray to black holocrystalline groundmass, while hydrothermally altered rhyolite is bleached white due to sericitic alteration.

Even in the least-altered Trp rhyolite, biotite and hornblende phenocrysts are mostly altered to chlorite and calcite. Identification of biotite and hornblende is possible by habit and presence of vestiges of the original mineral (Figure 31). Plagioclase and sanidine are locally unaffected by alteration. However, pervasive sericite and quartz-sericite alteration is widespread, commonly resulting in nearly complete alteration of feldspar and biotite to sericite. Altered rhyolite porphyry is easily identified as a strongly porphyritic white rock with sericitized feldspars and clear rounded quartz phenocrysts (Figure 32).

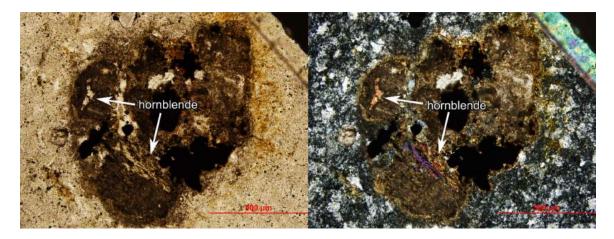


Figure 31. Micrograph of the rhyolite porphyry (sample KS097) in plane- and cross-polarized light. Clump of mafic minerals pervasively altered to clay and calcite. Two fragments of unaltered hornblende remain.

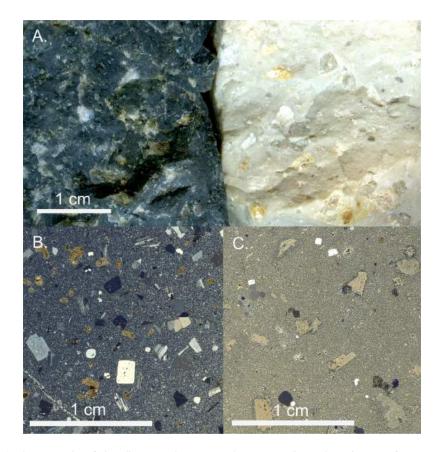


Figure 32. A) Photograph of rhyolite porphyry samples comparing alteration. Left: Sample KS098 has unaltered sanidine and plagioclase, but mafics are chloritized. Right: Sample KS099 is bleached and feldspars are sericitized. Only quartz remains unaffected. B) Micrograph of sample KS98 in cross-polarized light. C) Micrograph of sample KS099 in cross-polarized light.

Trachyandesite dikes(Tta)

To the northwest of the Walti pluton are distinctive, dark green-yellow andesite dikes that cut allochthonous rocks (Plate 1). Outcrops of this andesite were not found elsewhere in the study area. These dikes strike E to NNE, and the longest exposure is approximately 100 meters long.

The andesite is sparsely porphyritic with 10-15% phenocrysts in a micro- to cryptocrystalline groundmass (Figure 12G-H). Its mineral assemblage includes plagioclase as 1-2 mm phenocrysts and as abundant microlites (Table 2). Plagioclase is mostly altered to sericite and clay in all outcrops; composition of plagioclase by EDS was therefore not possible. Mafic minerals are <0.2 mm but completely oxidized and/or chloritized and therefore unidentifiable (Figure 33). The groundmass is heavily altered to chlorite and clay. Geochemistry shows relatively high concentrations of potassium, and on a total alkalis-silica diagram, these dikes plot as trachyandesites as discussed in the geochemistry section. Overall the texture is preserved despite alteration and the Tta unit is distinguished by the paucity of whitened clay-altered plagioclase phenocrysts in a yellow-green aphanitic groundmass.

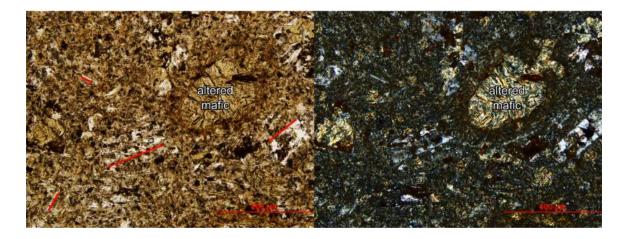


Figure 33. Micrograph of the trachyandesite dikes unit (sample KS025) in plane- and crosspolarized light. All mafic minerals are oxidized and altered to chlorite and clay minerals. Groundmass shows traces of microlitic plagioclase, marked by red lines.

Volcanic rocks

Eocene volcanic rocks crop out mostly on the north and east sides of the study area (Plate 1) and range in composition from intermediate to silicic. Most volcanic rocks are lavas, but some are tuffaceous and/or volcaniclastic in origin. A summary of textures and mineral assemblages is provided in Table 2. Representative examples of volcanics are provided in Figure 34.

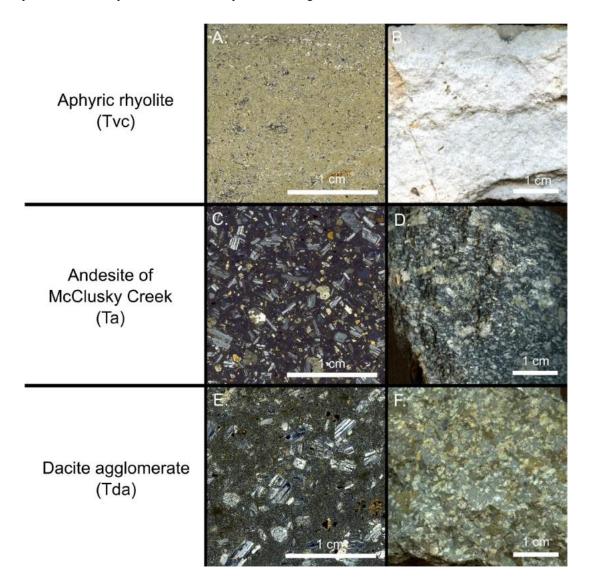


Figure 34. Representative micrographs and photographs of volcanic units. A) Micrograph of the aphyric rhyolite (sample KS050) in cross-polarized light. B) Photograph of the aphyric rhyolite (sample KS050). C) Micrograph of the andesite of McClusky Creek (sample KS144) in cross-polarized light. D) Photograph of the andesite of McClusky Creek (sample KS144). E) Micrograph of the dacite agglomerate (sample KS051) in cross-polarized light. F) Photograph of the dacite agglomerate (sample KS051).

Volcaniclastics and aphyric rhyolite flows (Tvc)

On the low hills west of McClusky Creek are white outcrops of aphyric rhyolite, tuffaceous volcaniclastic rocks, and conglomerate exposed over 0.5 km² (Plate 1). Outcrops are generally bleached entirely white with few features to distinguish composition or crystallinity (Figure 34A-B). Some outcrops display chaotic flow-banding indicative of lava flows (Figure 35), whereas others resemble conglomerate or lithic tuff. In the eastern part of the study area, this unit rests on upper plate chert and siltstone, Eocene conglomerate (Tcg), and partly the Mud Springs pluton (Tmd). The volcaniclastics also crop out as probable fault slivers juxtaposed against the northwest margin of the Walti pluton, and farther north, where Tvc rests on upper plate rocks. Outcrops to the northwest do not include aphyric rhyolite but rather consist of poorly sorted, nearly clast-supported, subangular pebble to cobble conglomerate containing clasts of volcanic material as well as chert and quartzite.

Figure 35. Photograph of aphyric rhyolite outcrop with flow banding, suggestive of a lava flow. Hammer is 28 cm long.

Where rhyolite lava, unit Tvc is generally aphyric or has rare fine-grained feldspar and/orbiotite phenocrysts that are completely sericitized (Figure 36). No quartz phenocrysts were found, distinguishing this unit from the rhyolite porphyry (Trp). Alteration is pervasive, commonly consisting of a combination of sericitization and silicification; irregular and discontinuous <1 mm quartz veinlets are present as are leached cavities containing euhedral quartz infilling (Figure 36).

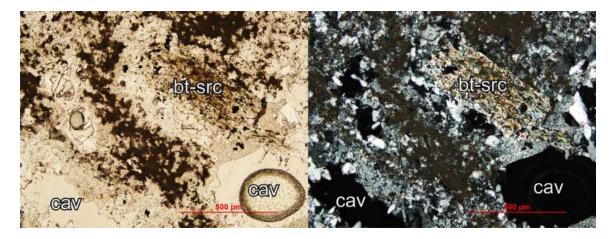


Figure 36. Micrograph of the aphyric rhyolite (sample KS050) in plane- and cross-polarized light. Rare phenocrysts have either been altered to sericite and clay or leached completely. Abbreviations: bt-src=biotite altered to sericite, cav=leached cavity.

Andesite lavas and dikes of McClusky Creek (Ta and Tad)

The andesite lavas of McClusky Creek (Ta and Tad) are exposed from east of the Mud Springs pluton to the northern perimeter of the study area along McClusky Creek (Plate 1). The unit is extensive, covering over 5 km², and likely continues for several kilometers to the north and south as suggested by regional mapping and aeromagnetic surveys. The andesite lavas rest on allochthonous Paleozoic sedimentary rocks to the north. Andesite outcrops east of the Mud Springs pluton are in drainage exposures otherwise covered in alluvium (QToa) and hence its contacts are obscured. South of the Mud Springs diorite, the andesite lavas of McClusky Creek rest on the dacite agglomerate (Tda and Tdad). Only Quaternary alluvium rests on the andesite of McClusky Creek in the map area. Some outcrops of the andesite display foliation or local flow banding.

Lavas typically weather maroon brown with platy partings and are porphyritic with ~40 percent phenocrysts in a cryptocrystalline, locally glassy, groundmass (Figure 34C-D). Crystals are fine-grained (mostly <1 mm) and abundant, in contrast with the Walti porphyritic intermediate dikes (Twp) that have larger (up to 4 mm) and fewer phenocrysts (Table 2). Andesite lavas of McClusky Creek have a consistent mineral assemblage that includes plagioclase as both 0.5-2 mm phenocrysts and <0.1 mm microlites. Plagioclase phenocryst composition approximated by SEM-EDS are andesine to labradorite (An₄₂₋₅₃) (Figure 14). No quartz or K-feldspar was observed. Mafic minerals include orthopyroxene, clinopyroxene, hornblende, magnetite, and rare biotite. Andesite lavas are largely unaltered and typically have pristine plagioclase and hornblende phenocrysts, although some variability in mineral assemblages exists between flows. Sample KS135 represents an oxidized lava flow with intensely oxidized and weathered orthopyroxene phenocrysts and groundmass minerals. Sample KS144 to the far south has a partly glassy groundmass with local flow banding and abundant <1 mm vesicles.

To the north of the Mud Springs pluton and rhyolite porphyry are several dikes (Tad) that cut rocks of the allochthon. Although all are intensely hydrothermally altered with varying levels of texture destruction, many of the dikes are related to the andesite lavas of McClusky Creek based on lithogeochemistry, discussed later. Those with the least texture destruction are porphyritic in a cryptocrystalline groundmass. Their alteration includes intense to complete sericitization of plagioclase, quartz- and clay-alteration of mafic minerals, and up to 2% disseminated pyrite (<0.3 mm), representing quartz-sericite-pyrite (QSP) alteration assemblage (Figure 37). The sericitized feldspars in the dikes have similar size, shape, and abundance as McClusky andesite lavas and are thus correlated with this unit.

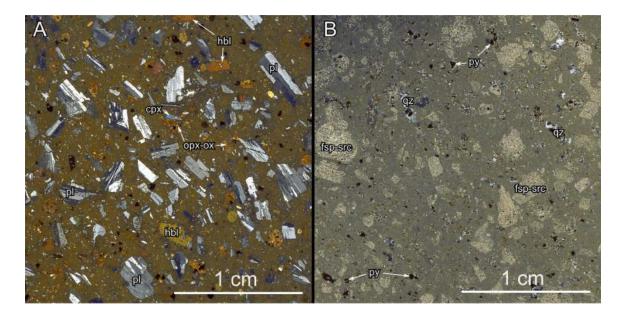


Figure 37. Micrographs of the andesite of McClusky Creek in cross-polarized light. A) Sample KS135 of an oxidized lava. Plagioclase and hornblende remain unaltered, but clinopyroxene and especially orthopyroxene phenocrysts are oxidized. B) Sample KS139 from drill core. Abbreviations: hbl=hornblende, pl=plagioclase, cpx=clinopyroxene, opx-ox=oxidized orthopyroxene, fsp-src=sericitized feldspar (typically illite).

Dacite agglomerate and dikes (Tda and Tdad)

The dacite agglomerate unit (Tda and Tdad) comprises shattered and/or fragmented volcanic material including lavas and breccias that surround the Mud Springs pluton (Plate 1). Their surface exposure is <1 km², much smaller than the area underlain by the andesite of McClusky Creek, and agglomerate is restricted to the Mud Springs area. The agglomerate rests on the Mud Springs pluton as well as outcrops of volcaniclastic tuff (Tvc) and upper plate rocks to the west. Both the andesite lavas of McClusky Creek (Ta) and alluvium (QToa) rest on the agglomerate. Drilling adjacent to the rhyolite porphyry intercepted altered dacite agglomerate (Sample KS141) within ~17 m of the surface, which rests on siltstone of the allochthon.

Lava clasts within the agglomerate are porphyritic dacite with 25-30% phenocrysts in a cryptocrystalline groundmass (Figure 34E-F). Phenocrysts are fine-grained (<1 mm) like the McClusky andesite lavas, but sparser. Clast mineral assemblages include plagioclase, clinopyroxene, hornblende, and magnetite. One distinction of the agglomerate from the McClusky andesite is a smaller amount of mafic phenocrysts (<4%) and absence of orthopyroxene (Table 2). Plagioclase phenocrysts tend be rounded with a shattered appearance, suggesting an explosive history (Figure 38). Their composition determined by EDS is andesine to labradorite (An₄₁₋₅₃) (Figure 14). Plagioclase microlites were not observed, however alteration may have masked their presence in the groundmass. The agglomerate is locally oxidized and weakly altered to sericite, chlorite, and clay, although most outcrops are strongly affected by weathering to clay. The only intense quartz-sericite-pyrite alteration of the agglomerate was observed in drill 1701C, which intercepted it near the surface.

Dacite agglomerate is also distinguished from McClusky andesite lavas by lithogeochemistry, discussed later. Altered dacite dikes (Tdad) that cut the Valmy and Comus formations to the north, in the vicinity of McClusky andesite dikes (Tad), are correlated with dacite agglomerate using lithogeochemistry and mineralogy.

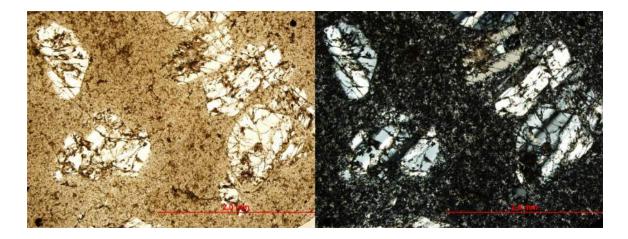


Figure 38. Micrograph of the dacite agglomerate (sample KS051) in plane- and cross-polarized light. Plagioclase phenocrysts are rounded and shattered in the agglomerate.

Quaternary units

Quaternary and Tertiary alluvium (QToa, Qaf, Qal)

On the eastern side of the study area are older, possibly Tertiary, weakly consolidated gravels (QToa; Plate 1) comprised of upper plate siliceous rocks, igneous rocks resembling the Mud Springs pluton, andesite lava, and conglomerates. This older alluvium is incised by modern drainages at the headwaters of McClusky Creek. One drainage has andesite lava of McClusky Creek beneath the old alluvium. The northern and western parts of the study area are covered by Quaternary alluvial fans and alluvium that lead into the Grass Valley alkali flats west of the study area (Plate 1).

Geochemistry

Major elements

Igneous samples were initially separated into altered and unaltered categories based on the presence or not of visible pervasive hydrothermal alteration of primary minerals in both hand samples and in thin section. Primary alteration criteria were based on presence of clay, leaching, and/or silicification of feldspars and matrix. Samples of the intrusive igneous rocks were further distinguished based on the presence of low-temperature acidic hydrothermal alteration versus those with high-temperature sodic-calcic and endoskarn alteration. Furthermore, many Walti pluton samples (including unaltered samples) indicated some level of magma mixing or mingling between different phases and/or some degree of magma disequilibrium supported by the presence of resorbed and unstable primary minerals. These samples were categorized separately from the rest of the groups because of their geochemical variability, which commonly was not related to hydrothermal alteration. A summary table with representative analyses of the least altered rocks is provided in Table 3 and the full dataset is provided in Appendix A.

Major-element geochemistry shows that all unaltered Eocene rocks fall in the high-K calc-alkaline magma series, except the Walti and Mud Springs plutons, which extend into the shoshonite series (Figure 39). Barring a couple of samples, the Gund diorite and andesite lavas of McClusky Creek have lower K₂O and form a separate group, but are still high-K calc-alkaline. Eocene rocks differ substantially in silica and alkali contents from the Ordovician alkaline mafic rocks of the Comus and Valmy formations. The Comus and Valmy basalts are the only mafic rocks at Keystone, whereas the Eocene calc-alkaline rocks all have SiO₂ >59 wt. %. Exceptions to this rule are the trachyandesite dikes (Tta), which are altered and enriched in K₂O (8-11%) and have SiO₂ contents as low as 53 wt. %. In a total alkalis-silica (TAS) diagram, they plot as a trachyandesite (Figure 40). All Eocene igneous rocks plot as metaluminous to weakly peraluminous (Figure 41). The dacite agglomerate is strongly peraluminous compared to other Eocene rocks. Samples of the trachyandesite and silicic volcaniclastic rocks are altered and likely not representative.

Sample ID	KS111	KTC 426	KS078	KS098	KS137	KS041	KS105	KTC 344	KS047	KS052	KS051	KS022
Abb.	Tmd	Tmp	T gd	Trp	Twq	T wd	T wp	Tta	Tvc	Та	T da	Ovb
Unit	Mud Springs diorite	Mud Springs peg.		Rhyolite porphyry	Walti quartz monz.	Walti diorite	Walti int. porph. Dikes	Trachy- andesite dikes	Aphyric rhyolite	Andesite of McClusky Creek	Dacite agglom.	Valmy basalt
SiO ₂	62.21	75.51	61.90	71.93	68.12	61.75	64.73	53.64	82.86	64.44	67.54	48.90
Al ₂ O ₃	15.97	14.11	17.04	13.99	15.25	17.20	15.89	18.97	11.75	16.44	16.68	16.44
FeO*	5.63	0.74	5.57	2.62	3.49	5.74	4.59	9.26	2.04	4.65	3.04	9.99
CaO	5.29	1.05	4.49	2.01	2.75	4.90	4.06	1.41	0.24	4.70	3.34	8.14
MgO	3.00	0.10	2.79	0.75	1.63	2.23	2.06	4.94	0.38	1.98	0.82	6.47
Na2O	2.53	3.49	2.90	3.34	3.34	3.37	3.01	0.21	0.07	3.49	3.46	4.48
K ₂ O	3.80	4.74	3.66	4.78	4.46	3.18	4.37	9.44	2.38	3.03	4.23	1.26
Cr2O3	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
TiO 2	0.93	0.05	0.88	0.29	0.55	0.91	0.78	1.23	0.12	0.70	0.41	2.96
MnO	0.10	0.04	0.10	0.07	0.07	0.11	0.08	0.09	0.01	0.08	0.07	0.14
P2O5	0.30	0.09	0.34	0.10	0.15	0.36	0.21	0.43	0.07	0.26	0.15	0.81
SrO	0.07	0.02	0.09	0.03	0.05	0.08	0.06	0.02	0.01	0.07	0.06	0.14
BaO	0.16	0.05	0.23	0.09	0.13	0.15	0.14	0.36	0.05	0.14	0.19	0.26
LOI	1.58	0.82	2.08	0.79	0.84	1.24	3.2	6.62	3.62	2.86	2.07	3
Total	98.64	100.49	100.1	100.76	99.28	100.97	98.69	99.28	98.68	101.28	101.3	99.56
С%	0.02		0.01	0.06	0.05	0.04	0.25		0.08	0.27	0.11	0.02
S %	0.09		0.07	0.02	0.03	< 0.01	0.01		0.01	< 0.01	< 0.01	0.01
Ag	<0.5	0.25	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
As	21.8	5	6.3	2	0.9	2	2	26	53.5	0.4	0.9	8.1
Ba	1280	432	2060	707	1275	1360	1145	2960	401	1135	1560	2260
Bi	0.2		0.02	0.09	0.02	0.03	0.02		0.09	0.01	0.02	0.01
Cd	<0.5	0.25	<0.5	<0.5	<0.5	< 0.5	< 0.5	0.5	<0.5	<0.5	<0.5	0.7
Ce	100.5	27.9	83.9	59.1	106.5	96.7	102	63.6	75.3	79.2	108.5	113.5
Co	15	0.5	10	4	9	10	11	18	2	9	4	34
Cr	60	10	20	30	30	10	30	20	10	10	20	130
Cs	1.92	0.83	22.5	3.36	8.52	5.85	2.29	1.86	4.71	1.64	1.68	2.04
Cu	8	2	8	9	6	6	12	10	5	8	5	35
Dy	4.26	1.96	3.74	3.1	3.28	4.56	3.48	5.02	2.52	3.05	4.12	5.82
Ēr	2.3	1.63	1.88	1.69	1.62	2.52	1.94	2.95	1.43	1.76	2.2	2.55
Eu	1.6	0.5	1.65	0.8	1.35	1.65	1.37	1.42	0.96	1.36	1.66	3.03
Ga	20.5	28.1	21.7	18.7	21.7	25.2	19.9	20.1	14.8	19.7	21.4	23.5
Gd	5.72	1.96	5.54	3.67	4.37	6.16	4.78	5.45	3.25	4.16	5.22	8.52
Ge	<5		<5	<5	<5	<5	<5		<5	<5	<5	<5
Hf	7.2	2.3	5.8	3.9	5.6	6.6	6.3	4.5	3.6	5.5	8.3	7.4

Table 3. Representative geochemical analyses of igneous units. Full dataset provided in Table A1.

Sample ID	KS111	KTC 426	KS078	KS098	KS137	KS041	KS105	KTC 344	KS047	KS052	KS051	KS022
Abb.	Tmd	Tmp	T gd	Trp	T wq	T wd	T wp	Tta	Tvc	Та	T da	Ovb
Unit	Mud Springs diorite	Mud Springs peg.		Rhyolite porphyry	Walti quartz monz.	Walti diorite	Walti int. porph. Dikes	Trachy- andesite dikes	Aphyric rhyolite	Andesite of McClusky Creek	Dacite agglom.	Valmy basalt
Hg	< 0.005		0.01	< 0.005	0.005	0.009	< 0.005		0.024	0.04	0.006	0.02
Но	0.82	0.45	0.77	0.61	0.6	0.88	0.7	1.03	0.5	0.6	0.79	1.04
In	0.014		0.014	0.021	0.022	0.021	0.02		0.008	0.033	0.028	0.043
La	51.7	14.8	45.4	30.7	62.2	50.9	55.5	31.3	38.9	42.4	58	57.1
Li	10	10	20	10	30	10	20	20	20	10	10	40
Lu	0.32	0.35	0.25	0.25	0.26	0.32	0.29	0.44	0.25	0.27	0.3	0.32
Мо	1	0.5	2	3	4	1	1	3	2	2	2	2
Nb	16.4	4.5	12.4	16.1	17.3	16.1	15.5	10.9	13	10.6	13.7	54
Nd	40.4	11.7	38.9	23.7	38.8	42.7	37.3	32.9	28.4	29.8	41.3	53.4
Ni	8	1	2	2	7	1	9	8	5	1	2	67
Pb	13	22	18	23	23	16	14	9	9	22	21	4
Pr	11.7	3.14	10.5	6.63	11.4	11.4	11.3	8.37	8.56	8.87	12.25	13.5
Rb	104	124	120	168.5	172.5	99.4	149	206	82.9	80.6	124	23.1
Re	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
Sb	1.24		0.73	0.23	0.12	0.17	0.22		1.06	0.05	0.07	0.62
Sc	11	1	11	5	6	10	8	19	3	8	4	17
Se	< 0.2		< 0.2	0.3	<0.2	< 0.2	0.2		0.8	<0.2	0.2	0.8
Sm	7.6	2.42	6.8	4.9	6.66	7.8	6.41	6.78	5.3	5.43	7.38	10.55
Sn	1	1	2	3	2	2	2	1	1	1	2	4
Sr	581	257	755	260	514	719	501	201	50.4	593	543	1095
Та	0.9	0.2	0.8	1.3	1.3	1	1.2	0.5	0.8	0.6	0.9	3.4
Tb	0.79	0.29	0.72	0.59	0.59	0.86	0.62	0.83	0.45	0.57	0.74	1.12
Те	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.03	< 0.01	< 0.01	0.04
Th	17.15	4.06	12.65	16.3	27.7	16.85	22.8	7.73	11.8	11.25	18.2	6.96
П	0.05	5	0.15	0.21	0.28	0.34	0.06	<10	0.39	< 0.02	0.04	0.08
Tm	0.37	0.26	0.28	0.24	0.25	0.37	0.28	0.44	0.23	0.27	0.32	0.37
U	3.64	5.54	3.02	5.34	5.71	3.18	4.46	4.31	3.27	2.32	3.31	1.9
V	118	6	122	33	67	113	95	225	6	99	32	219
W	1	1	1	1	1	1	2	18	1	1	1	1
Y	23.8	13.2	20.2	17.5	18.2	24.6	19.9	28.5	14.7	17.8	22.6	26.5
Yb	2.22	2.2	1.83	1.68	1.77	2.4	1.95	2.86	1.53	1.76	2.05	2.1
Zn	48	34	58	62	69	99	68	89	58	85	71	112
Zr	288	55	227	134	213	261	241	181	117	225	345	321

Major oxides are reported in weight percent normalized to 100% anhydrous. "Total" field refers to original analysis. Trace elements contents are in parts per million.

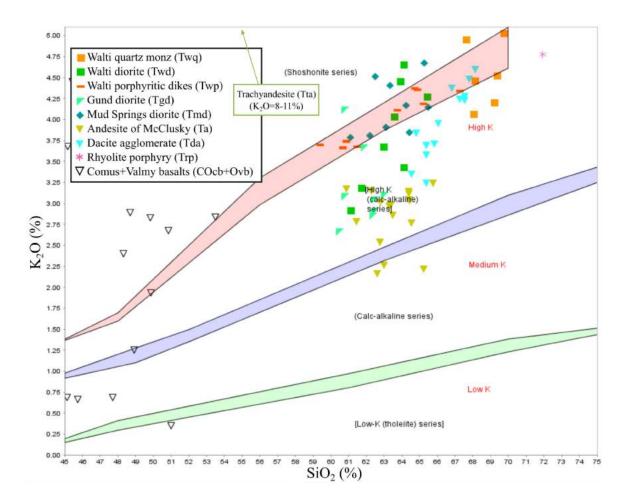
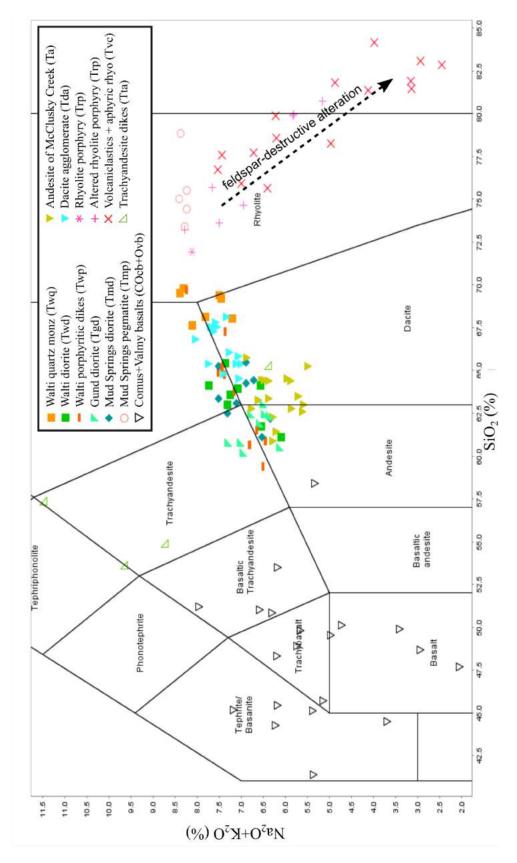



Figure 39. K_2O vs SiO₂ plot from Le Maitre et al. (1989). Altered samples omitted for clarity. A very large compositional gap is present between Paleozoic basalts and Eocene rocks, which are intermediate to felsic and plot as high-K calc-alkaline to shoshonitic magma series. The trachyandesite dikes (Tta) are more mafic than other Eocene rocks but highly altered with enriched K₂O, plotting outside the diagram.

Paleozoic basalts of the Comus and Valmy formations show variability due partly to spilitization. Samples of trachyandesite dikes are Figure 40. Total alkalis-silica diagram (Le Bas et al., 1986). Most altered rocks omitted for clarity. Altered samples of the rhyolite porphyry unit (Trp) and the volcaniclastics unit (Tvc) are included to show spread of silica content and differentiation trend. Early Eocene but fall off the calc-alkaline differentiation trend due to intense alteration and enrichment in K₂O.

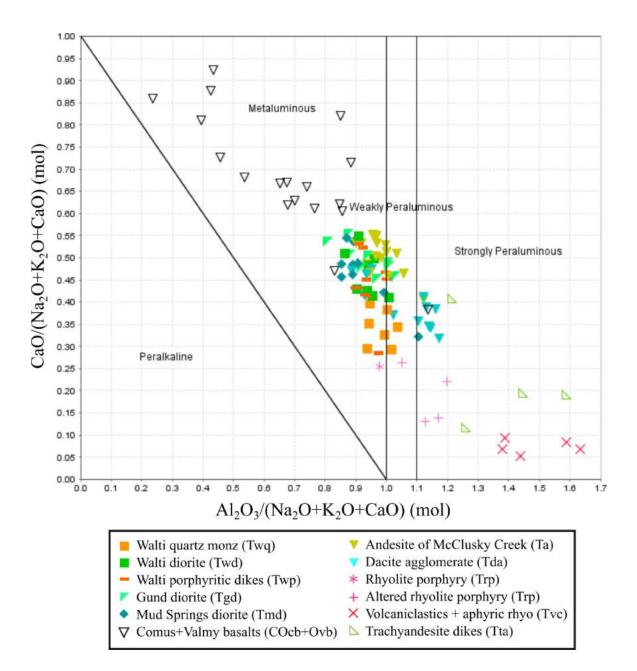


Figure 41. Plot of alumina saturation index (Frost and Frost, 2008) using molar $CaO/(Na_2OK_2O+Cao)$ vs. $Al_2O_3/(Na_2O+K_2O+CaO)$. Eocene igneous rocks are metaluminous to weakly peraluminous. Dacite agglomerate (Tda) is distinctly peraluminous. Samples of the rhyolite porphyry (Trp altered), volcaniclastics (Tvc) and trachyandesite (Tta) units are altered and have lost Na, Ca, \pm K relative to alumina and are thus, are not represented correctly.

Aside from the Ordovician Comus basalts and probable Eocene trachyandesite, the remaining

igneous rocks at Keystone, which are all Eocene and locally sourced, show relatively tight differentiation

trends in TAS and other variation diagrams of major elements, especially for Ti, Ca, and P (Figure 42). The

most siliceous rocks are pegmatites within the Mud Springs pluton (Tmd) and the volcaniclastics and aphyric rhyolite of unit Tvc. The volcaniclastics have >75 wt. % SiO₂, however all samples of volcaniclastics show intense clay and silica alteration, which is demonstrated by the decreasing alkali content with higher silica content. The rhyolite porphyry is also mostly altered and shows the same silica enrichment pattern, however one relatively unaltered sample (KS098) shows it is likely the most felsic unit at Keystone with 72 wt. % SiO₂.

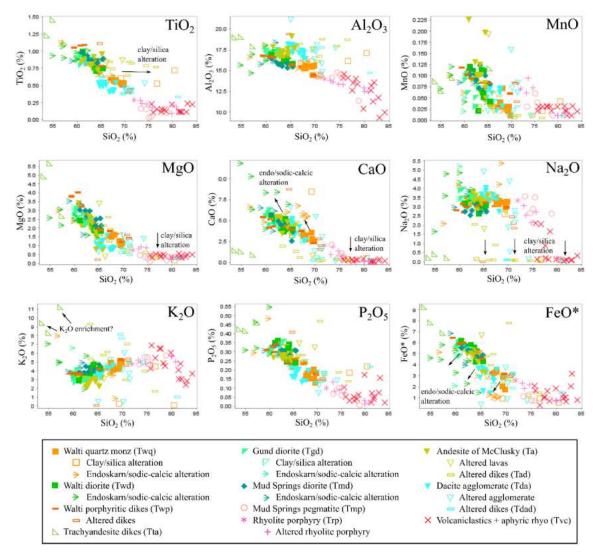


Figure 42. Major elements vs. SiO_2 plots for unaltered Eocene rocks at Keystone; patterns generally follow a differentiation trend across all elements. Rocks affected by low-temperature clay/silica alteration show depletion in alkalis and relative enrichment in SiO₂. Rocks affected by high-temperature endoskarn/sodic-calcic alteration show relative depletion in SiO₂ and FeO and enrichment in CaO. Trachyandesite dikes show unusual geochemical alteration with depletion in alkalis CaO and Na₂O, but relatively high MgO and K₂O.

The Walti pluton has quartz monzonitic to granodioritic phases (Twp) that range from 67-70 wt. % SiO₂, whereas the dioritic phases (Twd) range from 61-65 wt. % SiO₂. There is no chemical composition overlap or gradation between the intermediate and felsic phases of the Walti pluton, however samples with mixing or mingling textures fill this gap (Figure 43). The Walti intermediate porphyritic dikes (Twp) have a wide range of SiO₂ content (59-70 wt. %) which reflects their variable phenocryst assemblage and petrographic evidence of magma disequilibrium. The Mud Springs diorite overlaps with the Walti diorite chemically, and the Gund diorite is the most mafic pluton with 60-63 wt. % SiO₂. Magma mixing, mingling, and disequilibrium affected many Walti pluton samples, and thus their geochemistry is highly variable and difficult to characterize. Sodic-calcic and endoskarn alterations are common in the Walti and Gund plutons, and are expressed as enrichment in Na, Ca, P, and K, with depletion in Si and Fe. This alteration can also cause an apparent alkaline and slightly more mafic character with SiO₂ as low as 54.8 wt. % (Figure 43).

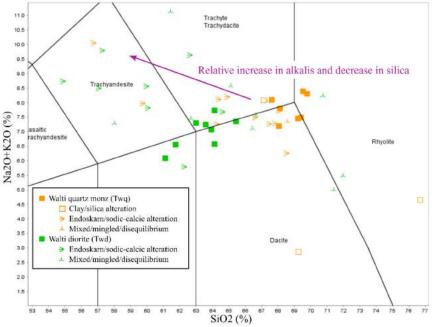


Figure 43. Total alkalis-silica diagram of Walti pluton samples only. Included are samples affected by low-temperature clay/silica alteration and high-temperature endoskarn/sodic-calcic alteration. Also included are samples with petrographic evidence of magma mixing/mingling and/or magma disequilibrium, resulting in variable geochemistry. Samples affected by endoskarn or sodic-calcic alteration show a relative increase in alkalis and decrease in silica.

Andesite lavas of McClusky Creek are relatively unaltered and range from 59-65 wt. % SiO₂. Although their geochemical composition ranges from andesite to dacite, their phenocryst assemblage of orthopyroxene, clinopyroxene, and plagioclase would classify them more appropriately as andesite. Much of the silica and alkalis are therefore likely in the groundmass. The dacite agglomerate is notably more felsic than the lavas of McClusky Creek and ranges from 64-68 wt. % SiO₂.

Hydrothermal alteration of igneous rocks is commonly expressed by partial removal of Na, Mg, and Ca; removal of K is less common. Alteration can also cause apparent enrichment in SiO₂, best shown in TiO₂ and Al₂O₃ variation diagrams where leached samples that have undergone feldspar-destructive alteration have shifted to the right of their respective unit's cluster (Figure 42). Intense low-temperature acidic alteration affected all samples of the volcaniclastics and aphyric rhyolite unit (Tvc) as well as most samples of the rhyolite porphyry (Trp). Dikes of andesite of McClusky Creek (Tad) and the dacite agglomerate (Tdad) are similarly intensely altered and show pervasive sodium removal, but the Walti intermediate porphyritic dikes (Twp) are relatively less altered. Pervasive chlorite and clay alteration of the trachyandesite (Tta) was observed in every sample and is reflected by depletion in sodium. However, these rocks also have the highest K₂O, suggesting they may have originally been more alkaline than other Eocene rocks at Keystone, or underwent a unique magmatic and/or alteration history.

Trace and immobile elements

Although alkalis can be added or removed depending on the style of alteration, other elements such as high-field strength elements (HFSE; e.g. Zr, Ti, Hf, Nb, Th) are rarely added during hydrothermal transport. HFSEs tend to resist mobilization by hydrothermal activity, because they are contained in resistive minerals such as zircon, rutile, and apatite. Such HFSEs are therefore considered immobile (Cann, 1970; Pearce, 1996; Pearce, 2014). With leaching and mass loss, however, relatively immobile elements become enriched from their primary concentrations and are thus important in assessing mass balance. Variation diagrams of HFSE can be useful for identifying cogenetic igneous rocks that share magmatic geochemical differentiation trends (Figure 44). Although all Eocene rocks appear to roughly follow the same differentiation trend in terms of SiO₂ and P₂O₅, plots of other elements reveal certain units have

separate trends or clusters and therefore, indicate rocks that are not cogenetic; such geochemical disparity is supported by field relations, petrography, and geochronology that indicate complex variability in composition and age. For example, the dacite agglomerate unit is off the main differentiation trend in an Al₂O₃ vs. TiO₂ plot, and is also distinctly different than the andesite lavas of McClusky Creek and the Walti quartz monzonite phase. The geochemical distinction of the dacite agglomerate is also strongly apparent in Hf and Zr. The Mud Springs diorite also shows trends inconsistent with cogenetic magmas, best demonstrated in Hf, Nb, and Zr (Figure 44). A general lack of linear differentiation trends likely reflects the complex open-systemnature of magmatism that involved episodic intrusion, variable storage, and extensive hybridization. Another interesting feature in these plots is the repeated overlap between the Gund diorite and andesite lavas of McClusky Creek, allowing for a possible cogenetic relationship. The Walti intermediate porphyritic dikes show a spread of compositions across different trace elements, which likely reflects their variable phenocryst assemblage and petrographic evidence of magma disequilibrium. An inset plot of Al₂O₃ vs. TiO₂ that includes the Comus and Valmy basalts shows they do not share any differentiation trend with Eocene rocks (Figure 44). The lack of any geochemical relationship between the basalts and all other Eocene rocks attests to their unique magmatic history unrelated to Eocene arc magmatism as supported by field relations, biostratigraphy, and isotopic dating.

Geochemical fingerprints can be further explored by considering a Nb/Zr vs. SiO₂ plot (Figure 45). As mafic to intermediate magmas fractionate during crystallization the Nb/Zr ratio will generally not change. The mutual incompatibility of Nb and Zr is therefore useful for the identification of distinct magma sources. Furthermore, hydrothermal alteration will have little impact on the Nb/Zr ratio because of their relative immobility. However, sequestration of zirconium by crystallization of zircon can have a significant impact on the Nb/Zr ratio of felsic rocks. This is shown by increased Nb/Zr in rocks with SiO₂ >68%. The Walti quartz monzonite, Walti intermediate porphyritic dikes, Mud Springs pegmatite, rhyolite porphyry, and volcaniclastics units, show progressive increase in Nb/Zr with SiO₂. Altered andesitic lavas and dikes that are silicified and therefore have higher SiO₂ than corresponding fresh rocks do not show this behavior and preserve their "andesitic" Nb/Zr ratio.

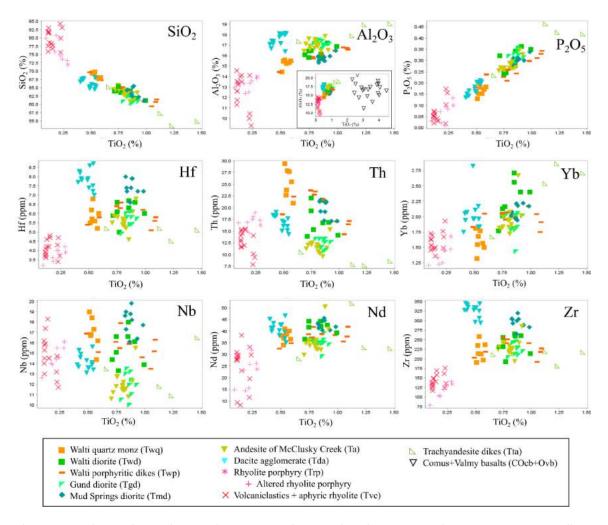


Figure 44. Select major and trace elements vs. TiO_2 . Unaltered Eocene rocks at Keystone generally follow a differentiation trend for only SiO_2 and P_2O_5 . All others show deviations or separate clusters. The dacite agglomerate (Tda) and Mud Springs diorite (Tmd) best show their separation in Hf, Nb, and Zr. The Gund diorite (Tgd) and andesite lavas of McClusky Creek (Ta) tend to overlap and form a cluster. The Walti intermediate porphyritic dikes (Twp) show a spread of compositions that follow a trend, likely reflecting their variable phenocryst assemblage and magma disequilibrium by mixing. Comus and Valmy basalts do not share any differentiation trend with Eocene rocks and were omitted for clarity. An example of their composition is shown as an inset plot of Al_2O_3 vs. TiO_2 .

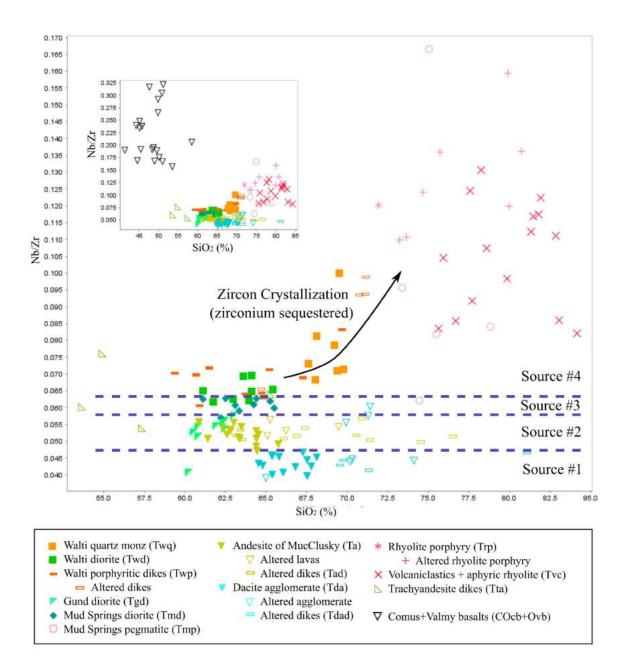


Figure 45. Plot of Nb/Zr vs SiO₂. Inset figure shows distribution of Comus and Valmy basalts. Felsic rocks show increasing Nb/Zr ratio because of sequestration of Zr by crystallization of zircons. Otherwise, Nb/Zr ratios of units are relatively stable as varying degrees of partial melting of a source of magmatic differentiation will affect both Nb and Zr equally. Furthermore, hydrothermal alteration tends to not affect the Nb/Zr ratio. To investigate the diverse magmatic history of Eocene igneous rocks at Keystone, possible magmatic sources are outlined by dashed lines. See text for further explanation.

The dacite agglomerate unit has Nb/Zr ratios < 0.047 which distinguish it from the lavas of McClusky Creek unit (Figure 45, "Source #1"). Exceptions to this are three samples with Nb/Zr ratios of 0.055-0.060 (samples KTC012, KTC013, KTC051). These samples were collected by Tom Chapin from two outcrops not visited by the author. One outcrop was interpreted as a separate tuff unit underlying the dacite agglomerate, and the other is an isolated outcrop of lava resting on the Mud Springs diorite. Explanations for their unique Nb/Zr ratio include incorporation of material from wall rocks or other volcanics, or they could represent a separate flow or eruption that is difficult to resolve from the dacite agglomerate from hand sample or petrography. Aside from these three samples, the Nb/Zr ratio was useful for classifying altered dikes and their volcanic counterparts. Lavas of the dacite agglomerate can appear similar to andesite lavas of McClusky Creek in hand sample, although differences between the two are immediately apparent under petrographic microscope, such as the shattered and rounded nature of plagioclase in the dacite. To the north of the rhyolite porphyry are intensely altered dikes that cut the Comus and Valmy formations. These dikes were also intercepted by drilling and are pervasively altered to sericite and/or clay, prohibiting identification of primary mineral assemblages. Their textures resemble both the dacite agglomerate and andesite lavas. The Nb/Zr ratio of these altered dikes was therefore used to associate them with either the dacite agglomerate or the andesite lavas of McClusky Creek. Furthermore, the Nb/Zr ratios are unlike those of the Walti intermediate porphyritic dikes, which have a Nb/Zr ratio closer to the Walti pluton.

Similar to observed overlapping trace-element compositions (Figure 44), the Gund diorite and andesite of McClusky Creek overlap in Nb/Zr ratios from 0.047 to 0.057 (Figure 45, "Source #2"), suggesting a shared source and/or magmatic history. One exception is sample KS114B, which has a much lower Nb/Zr ratio of 0.040. This sample came from an outcrop of the Gund diorite adjacent to marble and with a coarser texture and greater abundance of biotite phenocrysts. The unique Nb/Zr suggests this outcrop is separate from the Gund diorite, and is unlike other igneous rocks at Keystone; it may also have undergone metasomatic exchange with marble. Samples of the Mud Springs diorite have Nb/Zr ratios of 0.057 to 0.063 and have little overlap with samples from the Gund or Walti plutons (Figure 45, "Source #3"). The Walti pluton and Walti intermediate porphyritic dikes have the highest Nb/Zr ratios before being

affected by zirconium sequestration at $SiO_2 > 68\%$ (Figure 45, "Source #4"). Samples of the trachyandesite dikes have scattered Nb/Zr ratios and do not fall into any single outlined "source".

A plot of Zr/Ti vs. Nb/Y from Pearce (1996) can offer insight into the trachyandesite dikes unit (Figure 46). This discrimination diagram was modified from the original diagram by Winchester and Floyd (1977) and intended for discrimination of unknown basalts affected by weathering or metamorphism. The Zr/Ti ratio is steady during crystallization of mafic magmas until magnetite, titanite, or hornblende fractionate, thereby sequestering Ti while Zr continues to increase in the melt. Thus, felsic rocks will have a higher Zr/Ti ratio than mafic rocks, demonstrated by the upward trend from andesites and diorites to the rhyolite porphyry. The trachyandesite dikes have relatively low Zr/Ti and could therefore be considered basalt or basaltic andesite.

Higher Nb/Y ratios are commonly interpreted to reflect lower mantle partial melt fractions and/or source enrichment, resulting in a more alkaline character. The Ordovician Comus and Valmy basalts are indeed alkaline as supported by the presence of biotite. All other igneous rocks at Keystone, which are Eocene, are high-K calc-alkaline to shoshonitic. However, the trachyandesite dikes are sub-alkaline in this plot, providing further evidence their high K₂O is a product of alteration and that they may have a separate history from other Eocene igneous rocks at Keystone. An interesting observation in this plot is the dacite agglomerate, which has considerably lower Nb/Y than other Eocene rocks. Pearce (1996) notes that low Nb/Y ratios may represent greater contributions from crustal material with less fractionation (instead of evolved from a mafic melt) The relatively high alumina saturation index of dacite agglomerate, which places it within the peraluminous field, supports it having a greater crustal component relative to other Eocene igneous rocks.

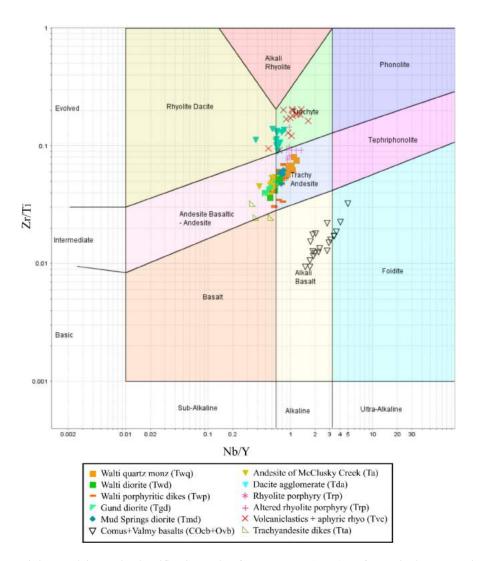


Figure 46. Zr/Ti vs. Nb/Y rock classification plot from Pearce (1996), after Winchester and Floyd (1977). Samples of trachyandesite dikes (Tta) are relatively mafic and sub-alkaline compared to the rest of Eocene igneous rocks at Keystone. The dacite agglomerate (Tda) is relatively evolved and sub-alkaline. See text for further explanation. Note the strong alkaline character of Early Paleozoic Comus and Valmy basalt.

Basalts

A Th/Yb vs. Nb/Yb plot from Pearce (2014), designed for use with basaltic rocks, highlights the different tectonic setting of Ordovician Comus and Valmy basalts from Eocene igneous rocks at Keystone (Figure 47). Although both Th and Nb are incompatible elements and behave similarly during melting, Th contents are higher in arc-related rocks possibly because of its hypothesized stronger partitioning into subduction-derived aqueous fluids, whereas Nb is not partitioned into subduction fluids. Thus, assessing

relative Th and Nb concentration is one way to potentially distinguish rocks derived from arc magmatism versus those derived from non-subduction settings. Crustal contamination can also increase the Th/Nb ratio. Ocean island basalts (OIB), or intraplate basalts, are alkalic and have higher Nb/Yb than tholeiitic basalts of mid ocean ridges (MORB). All basalts of the Comus and Valmy formations plot in the OIB area. As they only occur within these Paleozoic rocks and are typically intercalated with shales and limestones, they likely represent syn-depositional intraplate magmatism, possibly in a seamount setting as suggested by Bloomstein et al. (1991) for the Twin Creeks area, 155 km to the NNW.

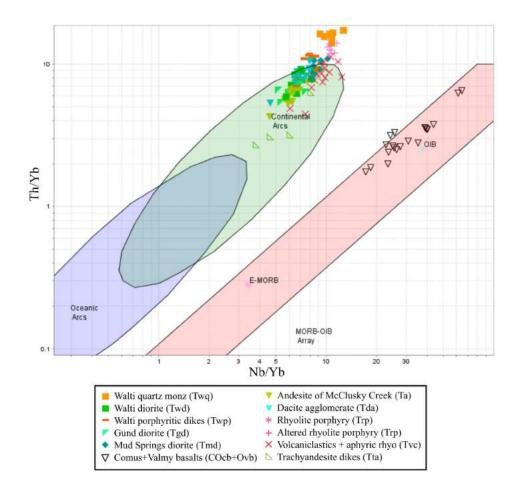


Figure 47. Th/Yb vs. Nb/Yb tectonic discriminant plot from Pearce (2014). Igneous rocks are separated by tectonic setting, with all basalts of the Comus and Valmy formations being distinctly ocean island basalts (OIB). All other rocks originate from the Eocene continental arc. Note that the diagram is designed for use with basaltic rocks, thus the differentiated Eocene rocks from Keystone partly lie outboard of the arc field.

Rare earth elements

All rocks except for the Walti quartz monzonite, rhyolite porphyry, volcaniclastics and aphyric rhyolite, trachyandesite, and basalts of the Comus and Valmy, have overlapping rare-earth element compositions (Figure 48). The Walti quartz monzonite deviates from the cluster of other Eocene rocks by having higher light rare-earth element contents (LREE) and relatively lower concentrations of heavy rare earth elements (HREE), thus making steeper overall normalized patterns. Apatite and titanite incorporate LREEs, both of which are present as accessory phases in the Walti quartz monzonite. The rhyolite porphyry and volcaniclastics unit have the lowest REE concentrations and strongest negative Eu anomalies. The wide spread of data for the volcaniclastics unit reflects its variability and difficulty to differentiate distinct rock types within it with the exception of the aphyric rhyolite; some variability is due to dilution by upper-plate quartzite and chert clasts. The data spread of the basalts may reflect variations across mafic sills or between the Comus and Valmy formations, as well as alteration to greenstone.

All Eocene rocks show a strong Eu anomaly, the largest found in the rhyolite porphyry. Sequestration of Eu²⁺ into plagioclase early in a magma's history can cause an Eu anomaly; such anomalies are characteristic of arc magmas and may bear on aspects such as their water contents. Interestingly, the dacite agglomerate, albeit relatively felsic, lacks the large negative Eu anomaly of the Walti quartz monzonite, rhyolite porphyry, and volcaniclastics units. The dacite may therefore have formed from processes that suppressed major plagioclase crystallization, perhaps because of a different magma composition and/or higher water content. Based on high ASI, Nb/Y, and lack of an Eu anomaly, it is possible the dacite magma represents a higher percentage of crustal melt than other Eocene igneous rocks. The Comus and Valmy basalts do not have an Eu anomaly, further evidence they do not originate from arc magmatism.

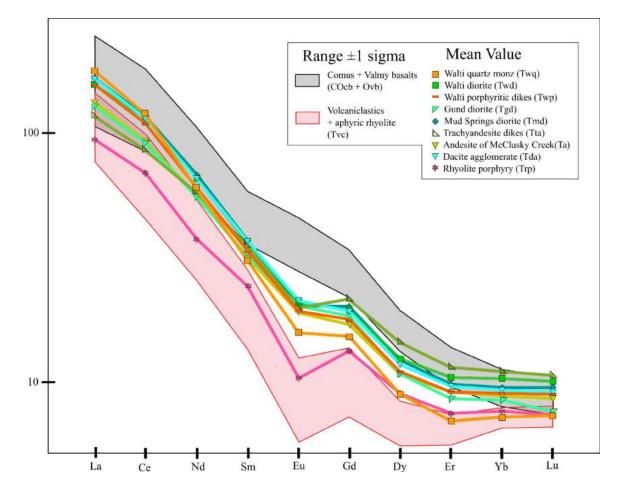


Figure 48. Chondrite-normalized rare-earth element spider plot (Nakamura, 1974). Mean values are shown for indicated units, and shaded areas for basalts and volcaniclastics units show variation of compositions.

Geochronology

U-Pb zircon results

Six igneous samples representing the Walti pluton and various volcanic units, as well as one sedimentary sample representing the basal conglomerate at the Tertiary unconformity were selected for U-Pb zircon dating. All samples had variable amounts of chlorite and sericite alteration and were unsuitable for ⁴⁰Ar/³⁹Ar analysis of primary minerals. U-Pb zircon crystallization ages for all six igneous samples are Eocene, between 34 and 37 Ma, and summarized in Table 4, and Figures 49 and 50. Full U-Pb zircon results are provided in Appendix B.

Two samples from the rhyolite porphyry and Walti intermediate porphyry dikes reported very high U concentrations (thousands of ppm), whereas the rest reported typical U (hundreds of ppm) (Figure 49A). High U results in higher decay and possible damage to the crystal lattice, which can contribute to radiogenic Pb loss and make the sample appear younger. Results for sample KS126 (Twp) suggest Pb loss due to high U, and analyses with >4000 ppm were omitted from the weighted mean age calculation. KS044 (Trp) also had high U but did not show compelling evidence of Pb loss.

Scanning electron microscope cathodoluminescence (SEM-CL) images of zircons were viewed for morphology and to target growth rims for analysis (Corfu et al., 2003). Although many grains showed complex zoning patterns under cathodoluminescence, inherited cores were rarely observed and where present, were avoided. The Walti quartz monzonite (Twq), dacite agglomerate (Tda), and aphyric rhyolite (Tvc) were the only rocks to have a few individual zircon rims dated at >40 Ma. Two zircons from sample KS014 (Twq) yielded dates of 41.9±0.8 and 46.3±0.8 Ma, and both analyses were rims of igneous zircons that appear no different from other zircons. Three zircons from sample KS051 (Tda) yielded dates of 50.1±1.9, 52.2±2.1, and 55.3±1.8 Ma, all on rims of zircons with no visual CL differences. Sample KS050 (Tvc) had three pre-Eocene zircons, at 81.7±0.7, 318.3±10.7, and 1642.8±21.1 Ma. Zircons of this sample range from acicular to stubby and weathered, and the three older zircons also show typical euhedral igneous morphologies. KS050 is a tuffaceous volcaniclastic rock that likely incorporates older zircons contained in exotic clasts and transported from elsewhere.

_	Unit									UTM NAD27	
Sample		Age (Ma) $\pm 2\sigma$ MSWD	±2σ	MSWD	-=	Method	Method	Mineral	Age type	East North	Comment
Tmd KS003	Mud Spring diorite E margin of pluton	35.87	0.06	0.21	6	$^{10}\mathrm{Ar}/^{39}\mathrm{Ar}$	40 Ar/ 39 Ar Single crystal step-heating plagioclase	plagioclase	igneous	540682 4417021	2 age clusters, considered older
Tmp KS110	Mud Springs pegmatite W margin of pluton	n/a	n/a	n/a	2	${}^{40}\mathrm{Ar}/{}^{39}\mathrm{Ar}$	$^{40}\mathrm{Ar}^{39}\mathrm{Ar}$ Single crystal step-heating	orthoclase	igneous	539514 4417280	poor spectra, no meaningful age
Tgd KS114A KS023 KS079	G und diorite W sill W dike cutting RMA main stock	35.82 34.8 32.48	$\begin{array}{c} 0.08 \\ 0.3 \\ 0.61 \end{array}$	0.71 70.51 116	6 6 11 6 4 7 4 7 4 7 1	⁴⁰ Ar/ ³⁹ Ar ¹⁰ Ar/ ³⁹ Ar ¹⁰ Ar/ ³⁹ Ar	${}^{40}_{\rm AT} {}^{79}_{\rm Y}$ Ar Bulk grain step-heating ${}^{40}_{\rm AT} {}^{719}_{\rm Y3}$ Ar Bulk grain step-heating ${}^{40}_{\rm AT} {}^{713}_{\rm Y3}$ Ar Single crystal step-heating	hornblende hornblende plagioclase	igneous igneous igneous	536139 4416180 536466 4417671 537214 4416387	wide error, poor spectra spread of ages, no meaningful age
Trp KS044 KS098 KS099	Rhyolite porphyry E margin, altered, qz veins center of stock NW interior, altered	36.17 35.43 n/a	0.33 0.06 n/a	3.6 11.9 n/a	33 8 ⁴ n/a ⁴	U-Pb ⁴⁰ Ar/ ³⁹ Ar ⁴⁰ Ar/ ³⁹ Ar	LA-ICP-MS Single crystal fusion Bulk grain step-heating	zircon sanidine illite	igneous igneous alteration	539997 4417710 539808 4417729 539790 4417891	poor spectra, too old >38 Ma
Twq KS014 KS137 KS029	Walti quartz monzonite W margin of pluton drill core @ 530 m, N margin N interior, altered, qz veins	35.05 35.52 36.27	0.41 0.14 0.1	4.2 0.83 183.49	31 2 4 3	U-Pb ⁴⁰ Ar/ ³⁹ Ar ⁴⁰ Ar/ ³⁹ Ar	LA-ICP-MS Bulk grain step-heating Bulk grain step-heating	zircon biotite illite	igneous igneous alteration	536914 4417273 537931 4419755 537965 4418926	poor spectra, too old
Twd KS041 KS086 KS093 KS068	Walti diorite NE margin of pluton SE margin of pluton E margin of pluton S interior, enclave in Walti	35.51 35.38 35.24 34.81	$\begin{array}{c} 0.19\\ 0.06\\ 0.22\\ 0.42\end{array}$	$\begin{array}{c} 4.9 \\ 1.6 \\ 12 \\ 0.33 \end{array}$	$88\frac{1}{4}$	⁴⁰ Ar/ ³⁹ Ar ⁴⁰ Ar/ ³⁹ Ar ⁴⁰ Ar/ ³⁹ Ar ⁴⁰ Ar/ ³⁹ Ar	${}^{40}\Lambda r^{739}\Lambda r$ Single crystal step-heating ${}^{40}\Lambda r^{739}\Lambda r$ Single crystal step-heating ${}^{40}\Lambda r^{739}\Lambda r$ Single crystal step-heating ${}^{40}\Lambda r^{739}\Lambda r$ Single crystal fitsion	plagioclase plagioclase plagioclase plagioclase	igneous igneous igneous igneous	539286 4418457 538743 4417226 538999 4417534 537785 4416879	wide error
Twp KS126	Walti intermediate porphyritic dikes dike cutting Mud Springs, altered	34.96	0.38	2.8	20	u-Pb		zircon	igneous	540073 4417170	
KS095 Tta KS025	dike cutting RMA, E of Walti Trachyandesite dikes altered dike, W of Walti	35.68 34.69	0.04	3.9		u-Pb	Bulk grain step-heating LA-ICP-MS	hornblende zircon	igneous igneous	539013 4417380 536760 4418145	
Tvc KS050 KS001	Volcaniclastics + aphyric rhyolite NE of Mud Springs, flow-banded NE of Mud Springs, tuffaceous	35.6 42.06	0.38 0.07	3.2 n/a	31 n/a	U-Pb ⁴⁰ Ar/ ³⁹ Ar	LA-ICP-MS Bulk grain step-heating	zircon illite	igneous alteration	540585 4417921 540616 4417887	poor spectra, too old
Ta KS144 KS135 KS139 KS019	Andesite of McClusky Creek far SE end of study area, lava E of Mud Springs, lava drill core @ 332 m, NE of Walti, altered dike, N of rhyolite porphyry	35.99 35.85 35.54 35.71	$\begin{array}{c} 0.04 \\ 0.08 \\ 0.06 \\ 0.12 \end{array}$	0.75 4.98 8.3 26.56	0000 4 4 4 4	⁴⁰ Ar/ ³⁹ Ar ⁴⁰ Ar/ ³⁹ Ar ⁴⁰ Ar/ ³⁹ Ar ⁴⁰ Ar/ ³⁹ Ar	Bulk grain step-heating Bulk grain step-heating Bulk grain step-heating Bulk grain step-heating	hornblende hornblende illite illite	igneous igneous alteration alteration	540610 4414578 541388 4417035 539354 4419536 540069 4418575	acceptable acceptable
Tda KS051	Dacite Agglomerate E of Mud Springs pluton	34.68	0.54	4.1	26	dq-U	LA-ICP-MS	zircon	igneous	540994 4417038	

Table 4. Summary of isotopic dating results

I		I								UTM NAD27	
	Location, Type	Age (Ma)	$\pm 2\sigma$	MSWD		Age (Ma) $\pm 2\sigma$ MSWD n ¹ Method	Method	Mineral	Age type	Mineral Age type East North	Comment
	Valmy basalt										
	W of Walti pluton	466.1	0.7	1.59	9	40Ar/39Ar	0.7 1.59 6 40Ar/39Ar Bulk grain step-heating biotite	biotite	igneous	536833 4418073	
	SE of Walti pluton	n/a	n/a	n/a	9	40Ar/39Ar	6 40Ar/39Ar Single crystal step-heating plagioclase	plagioclase	igneous	538377 4416821	spread of ages 55-130 Ma
	Tertiary conglomerate										
	N of Mud Springs pluton	35.62	0.32	4.1	136	U-Pb).32 4.1 136 U-Pb LA-ICP-MS	zircon	detrital	540304 4418097	max depositional age

¹Number of analyses indicates number of crystals analyzed for U-Pb zircon and ⁴⁰ Ar¹³⁹Ar single crystal, or number of steps in plateau

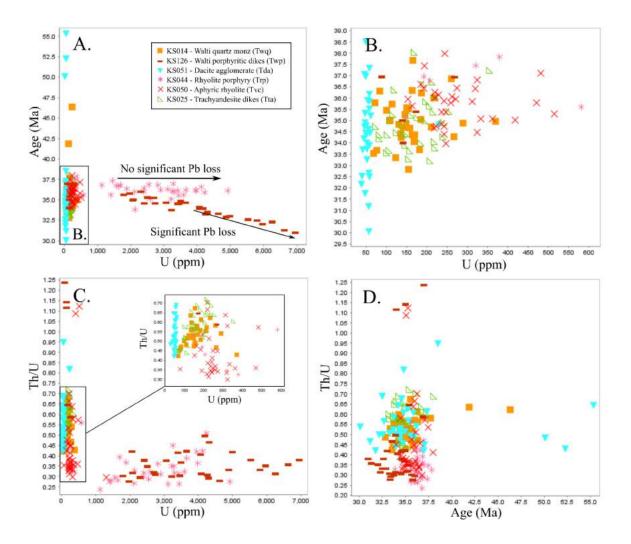


Figure 49. LA-ICP-MS results of zircon analyses. A) Age vs. uranium content. Samples KS126 and KS044 zircon U are a factor greater than other samples (thousands ppm vs. hundreds ppm). Sample KS126 has evidence of Pb loss with increasing U, causing an apparent younger age. KS044 has high U, but does not have evidence of Pb loss. B) Zoomed view of age vs. uranium. C) Th/U ratio vs. U. D) Th/U ratio vs. age.

All six igneous samples have a notably wide spread of individual zircon ages (Figure 50). Mean square weighted deviations (MSWD) range from 2.8 to 4.2. A MSWD>1 generally means the data do not represent a single value, or in this case, a single age of crystallization. Alternatively, the data spread may be a product of the analytical uncertainties related to LA-ICP-MS, mixing of more than one generation of zircon rims, or other factors including variable Pb loss. There was no correlation between the laser spot analysis location and age, and between the morphology of the crystal and age (Appendix B).

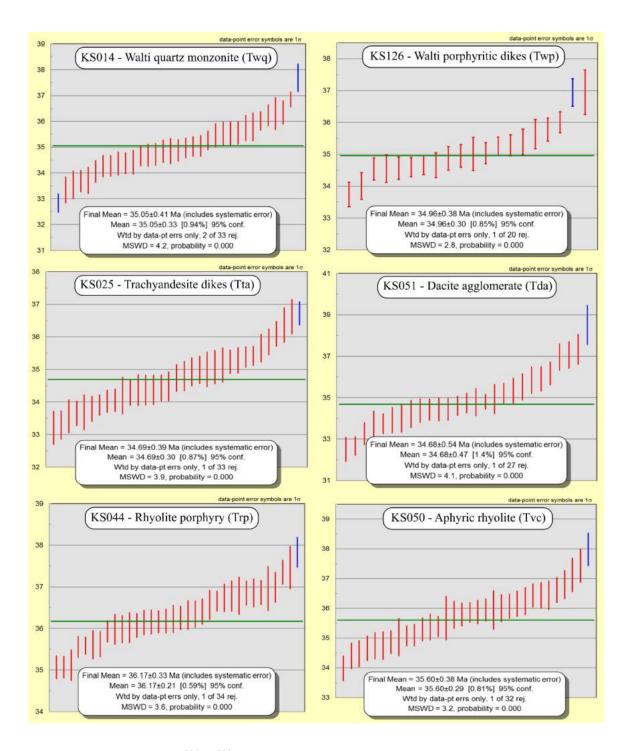


Figure 50. Weighted mean ²⁰⁶Pb/²³⁸U ages measured by LA-ICP-MS. Final mean age (green line) includes systematic error of zircon standards. Analyses in blue are those statistically rejected from weighted mean calculation.

Detrital zircons from basal conglomerate sample KS048 showed a youngest population cluster at ~36 Ma (Figure 51). Only 37 of the 195 analyses from KS048 were older than 41 Ma. Of those, six are Paleozoic and of different ages without any clustering. Of those analyses Proterozoic and older, clusters occur at ~1090, 1350, 1850, and 2670 Ma, consistent with the main ages of zircons in rocks of the Roberts Mountains allochthon and rocks therein derived (Linde et al., 2016). After omitting analyses that were discordant or showed Pb loss, 145 analyses were considered for determination of the maximum depositional age (Figure 52). Nine analyses were statistical outliers, and the weighted mean age of 134 grains was 35.62±0.32 Ma (MSWD=4.1). The significance of this age is addressed further in the discussion section.

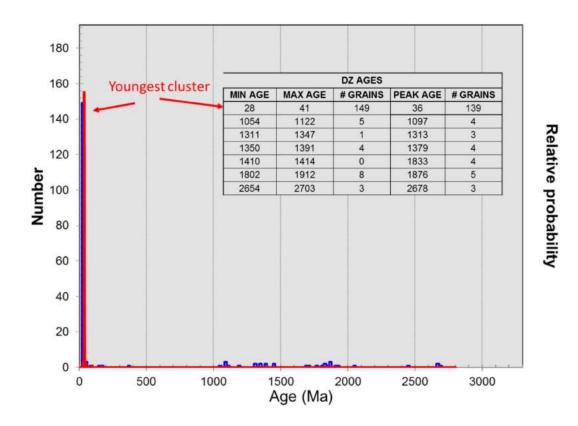


Figure 51. Distribution of detrital zircon analyses from basal conglomerate sample KS048. Most zircons are Eocene and clustered around 36 Ma. Proterozoic population clusters at ~1090, 1350, 1850, and 2670 Ma generally fit provenance of the Roberts Mountains allochthon as determined from Linde et al. (2016).

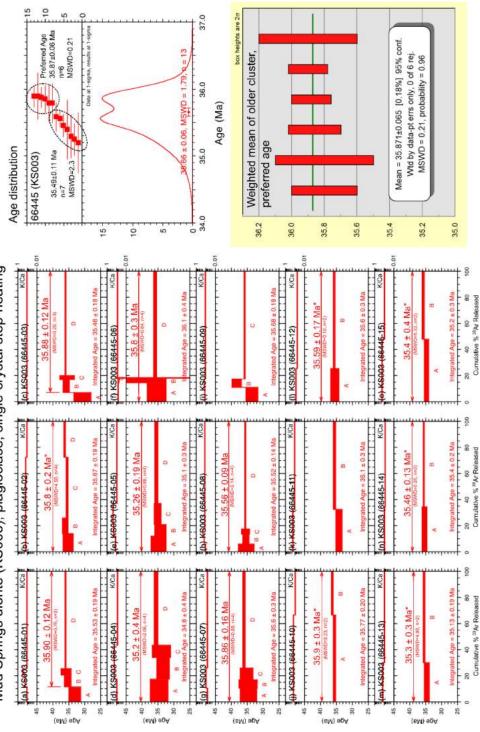
Figure 52. U-Pb detrital zircon analyses of the youngest population cluster of basal conglomerate sample KS048. A) Age of analyses vs. U (ppm), showing zircons with very high U experienced Pb loss, resulting in a younger age. B) Peak age of the youngest cluster after omissions that may represent the max depositional age of the basal conglomerate. However, no calculable uncertainty is possible with this method. C) Weighted mean age of the youngest cluster that may represent the max depositional age of the basal conglomerate.

⁴⁰Ar/³⁹Ar results

Mineral separates from 21 igneous samples were analyzed, including 7 plagioclase, 1 orthoclase, 1 sanidine, 2 biotite, 5 hornblende, and 5 illite (alteration) separates. The plagioclase and sanidine separates were analyzed using single crystal step-heating and single crystal total fusion methods, while the remainder were bulk grain step-heating analyses. Results are summarized in Table 4. Full ⁴⁰Ar/³⁹Ar results are provided in Appendix C.

Mud Springs diorite (Tmd)

Plagioclase from sample KS003 from the Mud Springs diorite (Tmd) was analyzed by single crystal step-heating and most grains produced flat spectra (Figure 53). Thirteen of the 15 analyses yielded plateaus, and although several of the plateaus were comprised of only 2 steps they had >50% of the total ³⁹Ar gas released. The distribution of the ages shows two population centers at 35.49 and 35.87 Ma, with the older forming a tighter cluster. Given the proximity of this diorite to nearby volcanics and the rhyolite porphyry that cuts the Mud Springs diorite, the cooling age of the plagioclase may have been compromised. Mafic minerals were still mostly altered to chlorite and plagioclase was unaltered but relatively weathered (Figure 54A). The weighted mean of the older cluster at 35.87±0.06 Ma is therefore the preferred age.


Mud Springs pegmatite (Tmp)

Orthoclase from sample KS110 from the Mud Springs pegmatite unit (Tmp) was analyzed by single crystal step-heating, but results had variable K/Ca and non-radiogenic Ar released in the initial heating steps. Ages were inconsistent from 34 to 37 Ma. Orthoclase in the pegmatite did not appear altered in thin section but dusted from weathering (Figure 54I). No preferred age determined.

Gund diorite (Tgd)

Plagioclase from sample KS079 from the Gund diorite (Tgd) was analyzed by single crystal stepheating. Data were inconsistent with widely different plateau ages ranging from 2 to 35 Ma. The Eocene population also did not yield a meaningful age. This sample had the least alteration of those collected from the main Gund stock, although plagioclase crystals were mildly sericitized (Figure 54E) and all mafic minerals were altered to chlorite and clay minerals. No preferred age was determined.

Hornblende from sample KS023 from a dike of the Gund diorite (Tgd) was analyzed by bulk grain step-heating (Figure 55C). Initial heating steps had variable K/Ca, low radiogenic Ar, and spurious ages. Steps G through L with >80% ³⁹Ar yield, gave a weighted mean age of 34.8±0.3 Ma (MSWD=70.51). In thin section the hornblende phenocrysts of this dike are relatively coarse and can be >1 mm, but often have inclusions of plagioclase, clinopyroxene, and groundmass (Figure 56A).

Mud Springs diorite (KS003), plagioclase, single-crystal step-heating

by *. Left: Spectra of 15 plagioclase crystals. Upper right: Age distribution of plateaus shows two population centers. Bottom right: Weighted mean Figure 53. ⁴⁰Ar³⁹Ar single crystal step-heating spectra of plagioclase from sample KS003 from the Mud Springs diorite. Forced plateaus indicated of the older population cluster is the preferred age.

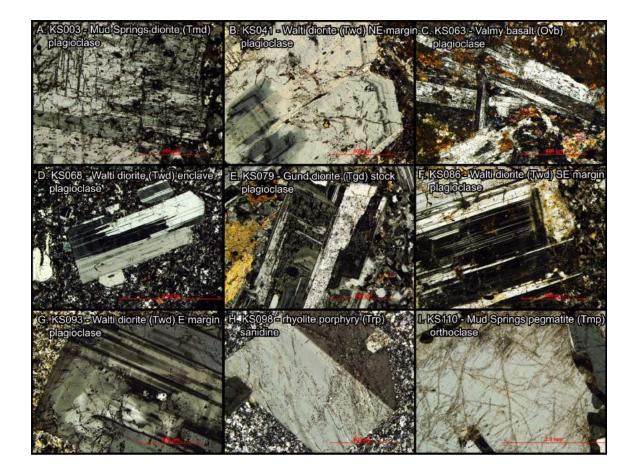


Figure 54. Micrographs of representative plagioclase, sanidine, and orthoclase of samples selected for Ar^{40}/Ar^{39} analysis. All micrographs were taken in cross-polarized light and at the same scale (10x) except for D. and I. (4x).

Hornblende from sample KS114A from the western sill of the Gund diorite was analyzed by bulk grain step-heating (Figure 55E). A plateau of six steps resulted although the K/Ca varies towards the end of the spectrum. Hornblende in thin section are smaller but unaltered with few inclusions compared to hornblende from other samples (Figure 56C). The preferred age is 35.82±0.08 Ma (MSWD=0.71).

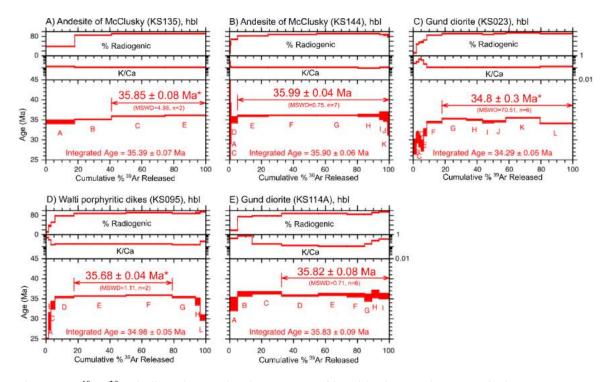


Figure 55. ⁴⁰Ar/³⁹Ar bulk grain step-heating spectra of hornblende samples. Forced plateaus indicated by *. A) Sample KS135 from the andesite lava of McClusky Creek has a climbing spectrum and forced plateau through the final two steps. B) Sample KS144 from the andesite lava of McClusky Creek has a flat spectrum with robust plateau. C) Sample KS023 from the Gund diorite has a climbing spectrum and very poor forced plateau. D) Sample KS095 from the Walti intermediate porphyritic dikes has forced plateau of two steps in the middle of spectrum. E) Sample KS114A from the Gund diorite has a relatively flat spectrum and good plateau age.

Walti quartz monzonite (Twq)

Biotite from sample KS137 from the Walti quartz monzonite phase (Twq) was analyzed by bulk grain step-heating (Figure 57). No plateau resulted, and the K/Ca ratio was variable throughout the analysis. This sample was taken from drill core that intercepted the pluton at depth. The Walti had a coarse-grained texture and biotite phenocrysts were >1 mm and mostly unaltered (Figure 56F). It is unclear what caused the variable K/Ca. An isochron through the final four heating steps intercepts atmospheric Ar and yields a preferred age of 35.52±0.14 Ma (MSWD=0.83).

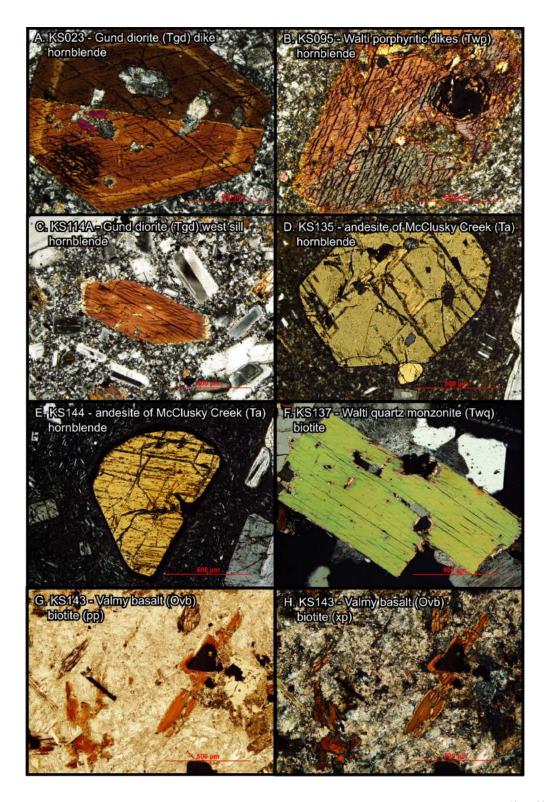


Figure 56. Micrographs of representative hornblende and biotite of samples selected for Ar^{40}/Ar^{39} analysis. Micrographs A. through F. were taken in cross-polarized light and at the same scale (10x). Micrographs G. and H. are of the same view in plane-polarized light and cross-polarized light, respectively.

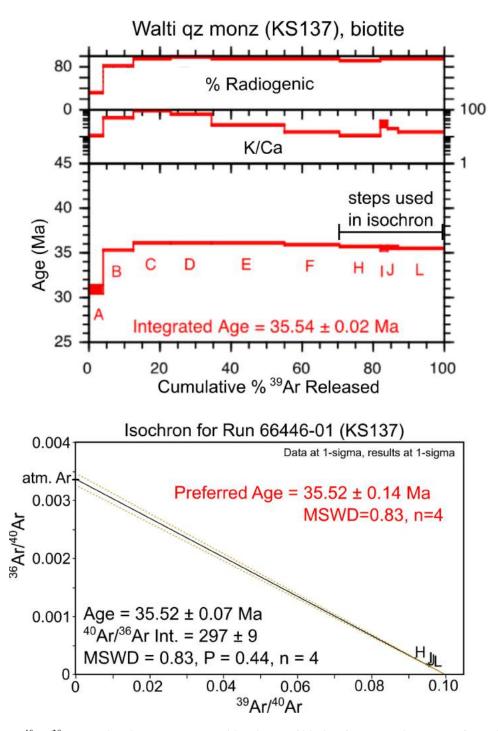
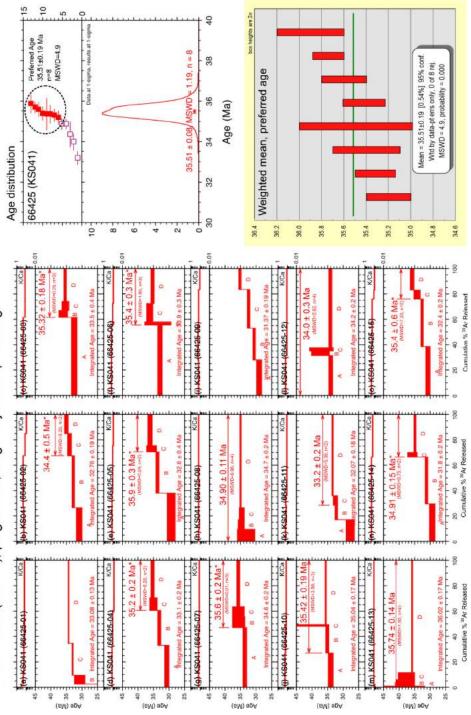


Figure 57. ⁴⁰Ar/³⁹Ar step-heating spectrum and isochron of biotite from sample KS137 from the Walti quartz monzonite. K/Ca was variable, and no plateau resulted. An isochron through the final four steps intercepts atmospheric Ar and agrees with integrated age.

Walti diorite (Twd)

Plagioclase from sample KS041 from the Walti diorite phase (Twd) at the pluton's northeast margin was analyzed by single crystal step-heating (Figure 58). Mafic minerals were partly chloritized, but plagioclase was relatively unaltered (Figure 54B). Most of the 15 analyses had climbing spectra that flattened to plateaus in the higher-temperature steps; 2 analyses did not yield plateaus, and 6 had plateaus based on only 2 steps with <50% of the total ³⁹Ar gas released. The youngest 5 analyses were considered outliers and a weighted mean age of 35.51±0.19 Ma (MSWD=4.9) is preferred.


Plagioclase from sample KS068 from a Walti diorite enclave (Twd) within the Walti quartz monzonite was analyzed by both single crystal and multi-grain step-heating (Figure 59). Spectra had relatively low precision and inconsistent ages. Plagioclase crystals in thin section show no signs of alteration (Figure 54D). However, thermal resetting of plagioclase is very likely given the geologic context of the diorite enclave that crystallized prior to the quartz monzonite phase. The weighted mean age is 34.8±0.42 Ma (MSWD=0.33).

Plagioclase from sample KS086 from the Walti diorite phase (Twd) at the pluton's southeast margin was analyzed by single crystal step-heating (Figure 60). Spectra were mostly flat with 12 of 14 analyses having plateaus, 2 of which involved only 2 steps but with >50% of the total ³⁹Ar gas released. Age distribution has 3 young outliers and 1 older outlier. Plagioclase crystals in thin section are light to moderately sericitized and weathered (Figure 54F). The weighted mean age is 35.38±0.06 Ma (MSWD=1.6).

Plagioclase from sample KS093 from the Walti diorite phase (Twd) at the pluton's eastern margin was analyzed by single crystal step-heating (Figure 61). Spectra varied from flat to climbing and while all had plateaus, several were comprised of only 2 steps with <50% of the total ³⁹Ar gas released. Plagioclase in thin section showed little to no alteration and only minor weathering (Figure 54G). The weighted mean age is 35.24±0.22 Ma (MSWD=12).

Walti intermediate porphyritic dikes (Twp)

Hornblende from sample KS095 from the Walti intermediate porphyritic dikes (Twp) was analyzed by bulk grain step-heating (Figure 55D). A plateau of only two steps (but with 61.2% of total ³⁹Ar released) occurred in the middle of the analysis with an age of 35.68±0.04 Ma (MSWD=1.11). Hornblende phenocrysts in thin section frequently show inclusions (Figure 56B) but given the precision the plateau age is accepted.

Walti diorite (KS041), plagioclase, single-crystal step-heating

indicated by *. Left: Spectra of 15 plagioclase crystals. Upper right: Age distribution of plateaus, open squares are omitted outliers. Figure 58. ⁴⁰Ar³⁹Ar single crystal step-heating spectra of plagioclase from sample KS041 from the Walti diorite. Forced plateaus Bottom right: Weighted mean of the older population cluster is the preferred age.

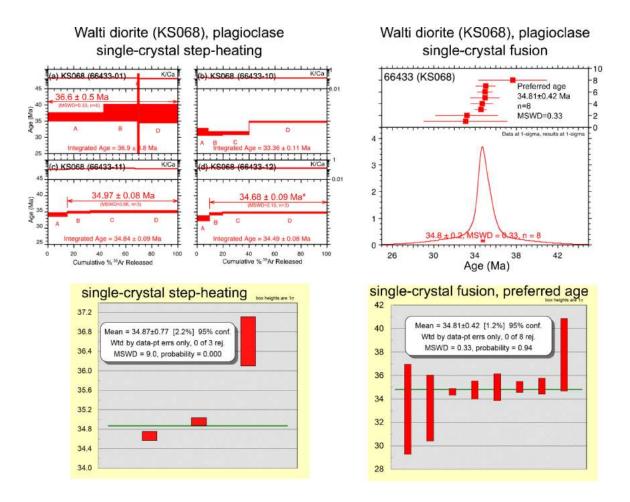
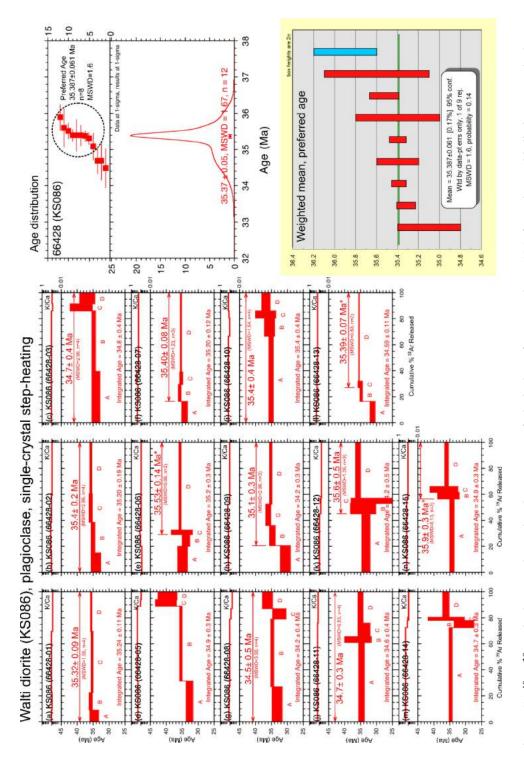
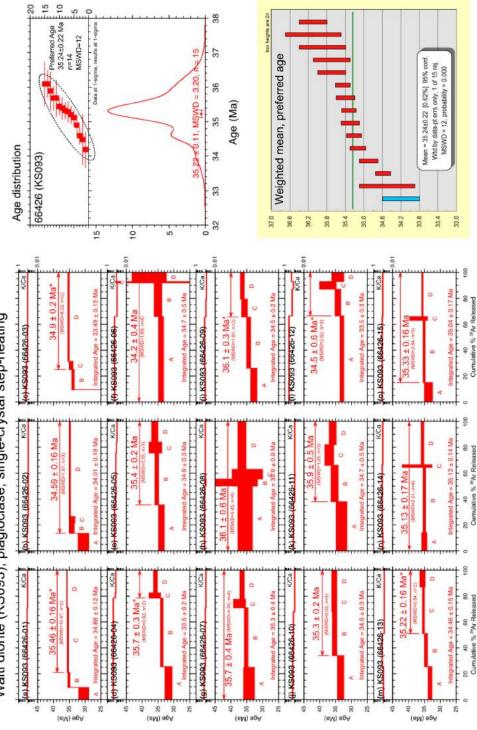
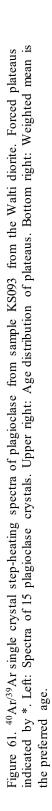
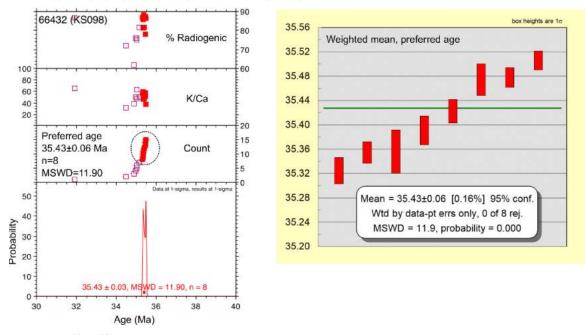





Figure 59. ⁴⁰Ar/³⁹Ar single crystal step-heating spectra and total fusion results of plagioclase from sample KS068 from the Walti diorite. Forced plateaus indicated by *. Left: Spectra of 4 plagioclase crystals. No meaningful age determined. Right: Age distribution of total fusion results. Weighted mean is the preferred age.

indicated by *. Left: Spectra of 14 plagioclase crystals. Upper right: Age distribution of plateaus. Bottom right: Weighted mean of circled population cluster is the preferred age. Figure 60. ⁴⁰Ar/³⁹Ar single crystal step-heating spectra of plagioclase from sample KS086 from the Walti diorite. Forced plateaus



Walti diorite (KS093), plagioclase, single-crystal step-heating

Rhyolite porphyry (Trp)

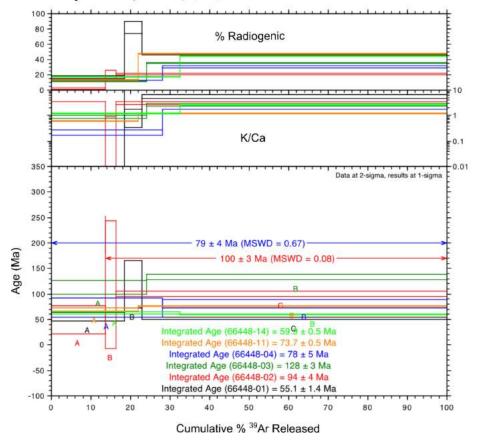
Sanidine from sample KS098 from the rhyolite porphyry unit (Trp) was analyzed by single crystal total fusion (Figure 62) and single crystal step-heating (Appendix C). Spectra were mostly flat but varied in age, as did the total fusion results. While the margins of the intrusion were bleached and had pervasive sericitic alteration, sample KS098 was collected from the relatively unaltered center in which sanidine was petrographically pristine (Figure 54H). In the total fusion results there is a relationship between low radiogenic argon and younger ages that would be attributed to partial argon loss, but this is not observed in the initial steps of the spectra. Eight of the 15 total fusion ages make a population at 35.43±0.06 Ma (MSWD=11.90), and this is the preferred age of emplacement.

Rhyolite porphyry (KS098), sanidine, single crystal fusion

Figure 62. ⁴⁰Ar/³⁹Ar single crystal total fusion results of sanidine from sample KS098 from the rhyolite porphyry. Total fusion ages have less spread than single crystal step-heating results. Oldest cluster is the preferred age.

Andesite of McClusky Creek (Ta)

Hornblende from sample KS135 from the andesite lavas of McClusky Creek (Ta) was analyzed by bulk grain step-heating (Figure 55A). It yielded a climbing spectrum and a plateau of only two steps (with 58.8% of the total ³⁹Ar released) occurred at the end of the analysis with an age of 35.85±0.08 Ma


(MSWD=4.98). Hornblende in thin section appeared unaltered but with minor inclusions of groundmass and apatite (Figure 56D). The plateau age is not entirely acceptable given the imprecision.

Hornblende from sample KS144 from the andesite lavas of McClusky Creek (Ta) was analyzed by bulk grain step-heating (Figure 55B). A plateau of seven steps resulted with an age of 35.99±.04 Ma (MSWD=0.75). This sample showed no signs of alteration or weathering, and hornblende rarely had inclusions (Figure 56E). The plateau age is the preferred age of the andesite.

Valmy basalt (Ovb)

Plagioclase from sample KS063 from Valmy basalt (Ovb) yielded no useful data. Single crystal step-heating ages ranged from 55 to 128 Ma (Figure 63). The relatively low radiogenic argon released make it likely the plagioclase had very little K, possibly because of albitization (Figure 54C). No age was accepted for this sample.

Biotite from sample KS143 from the Valmy basalt (Ovb) was analyzed by bulk grain step-heating (Figure 64). A plateau of six steps resulted in the latter half of the analysis, albeit with somewhat variable K/Ca ratio. Biotite was fine grained (typically <0.1mm), and although the basalt showed calcite and serpentine alteration, the biotite appeared unaltered (Figure 56G-H). The plateau was acceptable with an age of 466.1±0.7 Ma (MSWD=1.59).

Valmy basalt (KS063), plagioclase, single-crystal step-heating

Figure 63. ⁴⁰Ar/³⁹Ar single crystal step-heating spectra of plagioclase from sample KS063 from basalt of the Valmy Formation. Low radiogenic Ar and no consistent age determined.

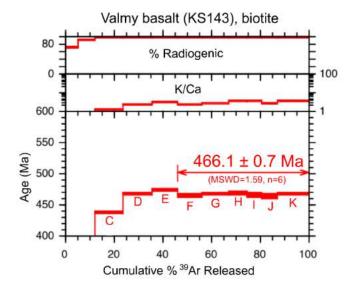


Figure 64. ⁴⁰Ar/³⁹Ar bulk grain step-heating spectrum of biotite from sample KS143 from basalt of the Valmy formation. Plateau age is Ordovician.

Hydrothermal illite

Dating of illite from hydrothermal alteration of feldspar phenocrysts was in general not successful in producing precise ages. Five samples were analyzed and only two yielded ages that were reasonable (Figure 65) based on geologic constraints. Illite from samples KS001 (aphyric rhyolite), KS029 (Walti quartz monzonite), and KS099 (rhyolite porphyry) had complex spectra and yielded Eocene ages that were somewhat older than their respective host rocks. Samples KS019 and KS139 of altered andesite of McClusky Creek also had complex spectra however their final steps had relatively stable K/Ca, flat patterns, and yielded ages younger than their host rocks. Typical problems encountered with ⁴⁰Ar/³⁹Ar dating of illite from altered feldspars include excess argon, mixed clays with the illite, and recoil loss of ³⁹Ar during irradiation (Onstott et al., 1995; Kelley, 2002; Clauer, 2013). There is evidence of mixed clays or at least two populations of illite including a very fine-grained population (Figure 66), which can explain both the variable K/Ca and recoil effect. The final heating steps for samples KS019 and KS139 are interpreted as heating of the coarser fraction of illite and offer acceptable ages of 35.71±0.12 Ma and 35.54±0.06 Ma, respectively, consistent with alteration closely following emplacement of the McClusky Creek andesite lavas. KS029 illite from altered Walti quartz monzonite produced a similar pattern to KS019 and KS139 illites with progressively younging steps with increased temperature; the final produced a relatively flat forced plateau of 36.27 ± 0.10 Ma but with a high MSWD of 183.49.

Despite imprecise results, all illite samples yielded forced plateaus or integrated (total gas) ages that are late Eocene, from ~35.5 to 42.1 Ma. Two of the ages for illite in the andesite of McClusky Creek are geologically reasonable and indicate that hydrothermal alteration of the andesite closely followed its emplacement. The other three illite samples (KS001, KS029, and KS099) produced ages that are unreasonably old based on more precise ages obtained in dating igneous minerals from unaltered versions of the same rock units. Although the illite ages for these three samples are clearly erroneous, there is good reason to suggest that they too reflect Eocene alteration and mineralization that, like samples KS019 and KS139, closely followed emplacement of their host units. The well-documented problems with dating illite: potential for excess Ar and ³⁹Ar recoil, are likely to have affected the Keystone illite analyses and produced the older ages. However, quantifying these effects are difficult and require additional study and analyses not part of the scope of this study.

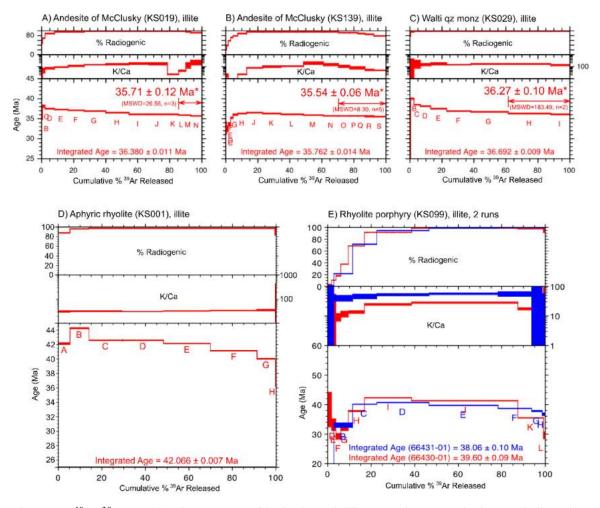
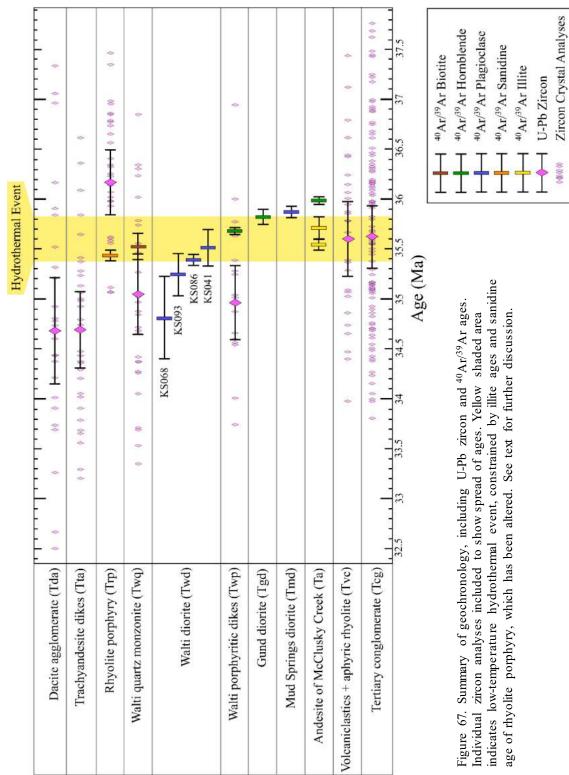


Figure 65. ⁴⁰Ar/³⁹Ar step-heating spectra of hydrothermal illite samples. Forced plateaus indicated by *. A) Sample KS019 from outcrop of altered andesite dike of McClusky Creek. Forced plateau through the final three steps yielded a reasonable age. B) Sample KS139 from drill core of altered andesite dike of McClusky Creek. Forced plateau through final five steps yielded a reasonable age. C) Sample KS029 from outcrop of altered Walti quartz monzonite. Forced plateau through final two steps yielded an age slightly older than the unit. Similarly, the integrated (total gas) age is too old (constrained by U-Pb zircon and biotite age). D) Sample KS001 from altered aphyric rhyolite produced a poor spectrum with no plateau, and an integrated (total gas) age that is unreasonably old (constrained by U-Pb zircon age) but also Eocene. E) Sample KS099 from altered rhyolite porphyry, analyzed twice. Poor spectra with no plateau and integrated (total gas) ages are too old but also Eocene (constrained by sanidine age). The ⁴⁰Ar/³⁹Ar integrated or total gas age is similar to a conventional K-Ar age determination but does not require a separate analysis for determination of total potassium.

Figure 66. Micrographs of representative illite of samples selected for Ar⁴⁰/Ar³⁹ analysis. A-D) Sample KS019 in plane and cross-polarized light and at 10x and 50x. E-H) Sample KS029 in plane and cross-polarized light and at 10x and 50x. I-L) Sample KS050 in plane and cross-polarized light and at 10x and 50x. M-P) Sample KS099 in plane and cross-polarized light and at 10x and 50x. Q-T) Sample KS139 in plane and cross-polarized light and at 10x and 50x.


Discussion

Timeline of igneous activity at Keystone

Ages determined by U-Pb zircon have larger uncertainties than ⁴⁰Ar/³⁹Ar ages. Especially when considering the individual zircon analyses, all six igneous samples essentially overlap (Figure 67). Weighted means of the U-Pb data have relatively high MSWDs (>2.8), and so these mean ages have little statistical significance. Either the analytical uncertainties associated with LA-ICP-MS are too high, or the zircon populations for each sample are not of the same age but of different zircon crystallization events, or both. If these samples were re-analyzed with a higher precision method such as TIMS, then perhaps the youngest zircons for each sample could justifiably represent the true age of emplacement.

Nonetheless, the U-Pb data confirm the Eocene age of nearly all igneous rocks at Keystone. Most zircons had ages between 34 and 37 Ma. A few zircons from the Walti quartz monzonite and dacite agglomerate were older than this range, up to 55.3±1.8 Ma. These Eocene to Paleocene zircons have magmatic morphologies (Corfu et al. 2003) that appear no different from the 34-37 Ma population. They may have been inherited from an older and deeper magmatic system that was still part of the same arc magmatism related to the subducted Farallon slab, although no Eocene magmatic ages older than ~45 Ma are known in the Great Basin.

There is no evidence for Cretaceous or Jurassic magmatism in the Keystone area. Although the Mill Canyon stock 25 km north in the Cortez Mountains is Jurassic at 158-160 Ma (Arehart et al., 2003), no Jurassic rocks were found at Keystone and no zircons derived from unequivocally local-sourced units gave Jurassic or Cretaceous ages. The volcaniclastics and aphyric rhyolite unit (Tvc) had three pre-Eocene zircons, including a date of 81.7±0.7 Ma that was likely derived from Cretaceous igneous rocks and later transported as an alluvial clast to the study area during the Eocene. Similarly, the detrital zircons from sample KS048 of the basal conglomerate had two Cretaceous zircons at 96.5±1.3 and 142.7±5.1 Ma, as well as a Jurassic zircon at 165.2±2.5 Ma, that were likely transported and deposited at the Tertiary unconformity in the Eocene.

Cross-cutting relationships, U-Pb zircon, and Ar data together allow interpretation of a timeline for the emplacement of the various igneous units at Keystone (Figure 67). The following section summarizes the timeline and then addresses the geologic context of each unit from oldest to youngest.

Summary

Mafic rocks at Keystone are ocean island basalts (OIBs) that cropped out solely within the Ordovician Valmy Formation or Cambrian-Ordovician Comus Formation and most likely reflect intraplate magmatism during deposition of the Valmy and Comus. They are the oldest igneous rocks at Keystone and are unrelated to Eocene arc magmatism. Felsic tuffaceous volcaniclastics and aphyric rhyolite flows were the first Eocene igneous rocks, determined by field relations as they rest directly on the Tertiary basal conglomerate that has a maximum depositional age of 35.62 ± 0.32 Ma. Andesite lavas of McClusky Creek are $\sim 35.99\pm 0.04$ Ma, which overlaps within uncertainty with, but in places may be slightly older than, the Eocene basal conglomerate. The Mud Springs and Gund diorites are chemically similar to the andesite and were emplaced at 35.87±0.06 Ma and 35.82±0.08 Ma, respectively. Igneous rocks of the Walti magmatic system followed next, beginning with the Walti intermediate porphyritic dikes at 35.68±0.04 Ma. The Walti is a composite pluton that likely emplaced and cooled in stages. The oldest ages for the diorite and quartz monzonite phases are 35.51±0.19 Ma and 35.52±0.14 Ma, respectively. The rhyolite porphyry emplaced next, cutting the Mud Springs, at 35.43±0.06 Ma. Interestingly, the rhyolite porphyry had the oldest U-Pb zircon ages, suggesting the melt evolved from or incorporated inherited zircons from an older and deeper chamber, unrelated to the Walti. The trachyandesite and dacite agglomerate mark the end of magmatic activity at Keystone, however their Eocene ages are poorly constrained.

Basalts of the Valmy Formation (Ovb)

⁴⁰Ar/³⁹Ar dating of biotite from sample KS143 yielded an age of 466±0.7 Ma, which is Middle Ordovician and consistent with biostratigraphic ages from limestone at Keystone (Table 1). All basalts, mafic sills, and greenstones at Keystone crop out solely within the Ordovician Valmy or Cambrian-Ordovician Comus Formations. All samples of basalts have distinctive and notably high concentrations of compatible and incompatible trace elements consistent with ocean island basalts (OIB) and unlike depleted mid-ocean ridge basalts (MORB) or arc-related basalts. The basalts and ultramafic rocks most likely reflect intraplate magmatism during deposition of the Valmy and Comus in a deep basin setting away from the passive margin slope. However, the presence of abundant limestone is indicative of relatively shallow water depths that may have accompanied constructional volcanic centers (e.g., Bloomstein et al., 1991; Breit et al., 2005; Cook, 2015). Modern OIBs are associated with intraplate hot spots or mantle plumes and rarely with oceanic ridges. The Valmy and Comus formations at Keystone are part of the Roberts Mountains allochthon, and therefore, the magmatism that produced the basalts did not occur at Keystone but possibly was transported 10s of kms or more from the west.

Volcaniclastics and aphyric rhyolite (Tvc)

U-Pb zircon results had wide uncertainties that do not resolve the time of emplacement. However, the distribution of zircon ages was similar to the underlying Tertiary basal conglomerate's (Tcg) detrital zircons, supporting the interpretation that the two were sequentially deposited. The occurrence of the volcaniclastics unit on either side of the Keystone window and resting directly on Paleozoic rocks strongly support it being the first Eocene volcanic unit at Keystone. The aphyric rhyolite lava differs petrographically and chemically from the younger Trp porphyritic rhyolite, excluding it as a possible source. Therefore, no source pluton is currently identified for the aphyric rhyolite.

Andesite of McClusky Creek (Ta)

⁴⁰Ar/³⁹Ar dating of hornblende from samples KS135 and KS144 of the andesite lavas of McClusky Creek yielded the oldest ages. Hornblende is shown to be the most retentive of radiogenic ³⁹Ar, with diffusion studies demonstrating a closure temperature ~500 °C, which varies slightly based on cooling rate and grain size (McDougall and Harrison, 1999, p.158-159). Given the sampling of a lava that rapidly cooled as evident from glassy matrices of some samples, the lack of visible alteration of hornblende, and the quality of flat spectra, the cooling age is representative of the emplacement age of the andesite unit.

Sample KS144's spectrum has a robust plateau compared to KS135's, which has a slight climbing spectrum. Sample KS135 was collected from an outcrop only 500 m west of the Mud Springs pluton, which

has a plagioclase ⁴⁰Ar/³⁹Ar age of 35.87±0.065 Ma from sample KS003. The initial steps in KS135's spectrum had low radiogenic Ar, and a low precision plateau of only two steps (with 58.8% of the total ³⁹Ar released) occurs at the end of the analysis at 35.85±0.08 Ma (MSWD=4.98). In contrast, sample KS144 was collected from 2 km south of the Mud Springs pluton and was most likely unaffected by any reheating that may have accompanied intrusion of the Mud Springs diorite. KS144's plateau at 35.99±.04 Ma (MSWD=0.75) is therefore the preferred age.

Mapping shows the only unit resting on the andesite are Tertiary to Quaternary gravels and alluvium. Units underlying the andesite include the Tda dacite agglomerate and siliceous rocks of the Valmy Formation. Field relations between the McClusky andesite and the volcaniclastics and aphyric rhyolite unit (Tvc) are unknown, although mapping suggests the volcaniclastics unit underlies the dacite agglomerate's western margin. The volcaniclastics unit and dacite agglomerate are therefore likely older than the andesite lavas of McClusky Creek. However, the textures observed in the dacite agglomerate allow for subvolcanic emplacement of the unit, making it potentially younger than the andesite. This possibility is supported by the presence of zircons in the dacite that are younger than any other zircons analyzed from other units at Keystone (Figure 49B).

Mud Springs diorite (Tmd)

The proximity to approximately coeval volcanics and presence of miarolitic cavities suggest the Mud Springs pluton was shallowly emplaced. Most of the pluton has alteration of mafic minerals to chlorite and sample KS003 (selected for ⁴⁰Ar/³⁹Ar of plagioclase) from the eastern margin of the pluton exhibited the least amount of alteration. Single-crystal step-heating spectra yielded two age population clusters, with the older having a tighter distribution. The older population at 35.87±0.06 Ma (MSWD=0.21) is the best approximation for the emplacement of the pluton, overlapping with the Gund diorite. Differences in trace-element concentrations and Nb/Zr suggest the two are not directly related. However, it is possible that the Mud Springs diorite, being slightly more silicic and alkaline than the Gund diorite, could represent a more evolved and hydrous melt from the Gund system that was emplaced higher in the crust.

Interestingly, the younger population cluster has a weighted mean age of 35.49 ± 0.11 (MSWD=2.3), which overlaps with the 40 Ar/ 39 Ar age of sanidine (35.43 ± 0.06 Ma) from the rhyolite

porphyry. This intrusion cuts the northwest margin of the Mud Springs and is only 800 m from sample KS003. The bimodal cooling ages of plagioclase from sample KS003 may therefore be attributed to reheating and some argon loss during the emplacement of the Trp rhyolite porphyry.

Gund diorite (Tgd)

Plagioclase from sample KS079 and hornblende from sample KS114A were dated by ⁴⁰Ar/³⁹Arto determine the age of the Gund diorite. The samples were taken from different locations: sample KS079 from the larger lopolith-shaped stock 400 m south of the Walti pluton, and sample KS114A from the smaller sill 850 m southwest of the Walti pluton. All outcrops of the larger Gund stock had mafic minerals altered to chlorite and sample KS079 had the least disturbed plagioclase (Figure 54E). However, plagioclase spectra were poor, and no meaningful age was derived. The Gund stock was emplaced along the thrust fault that juxtaposes allochthonous Ordovician rocks of the Valmy Formation above autochthonous Devonian carbonates. The wall rocks proximal to the Gund stock are contact metamorphosed to marble and calc-silicate hornfels, but silicification and jasperoid alteration follows the thrust fault on either side of the stock. Since plagioclase has a relatively low closure temperature ~225-300 °C (Cassata et al., 2009), it is possible that hydrothermal activity responsible for the alteration disturbed the retention of radiogenic Ar in plagioclase. Alternatively, another heat source such as the nearby Walti pluton, only 400 m to the north, could have contributed to argon loss.

In contrast, homblende from sample KS114A of the Gund sill yielded a flat spectrum with a plateau at 35.82±0.08 Ma (MSWD=0.71). Unlike the stock, the Gund sill was emplaced into a low-angle fault bounded on either side by lower plate carbonates. Wall rocks proximal to the sill are contact metamorphosed to marble or calc-silicate homfels depending on the protolith, but are not hydrothermally altered. The lack of visible alteration of mafic minerals, the greater distance of the sample from the Walti pluton, and a flat spectrum support this homblende cooling age as reflecting the emplacement age of the Gund diorite. This age is slightly younger than but overlaps within uncertainty, the andesite of McClusky Creek. The similarities in age as well as the major and trace element geochemistry and plagioclase compositions are permissive for a genetic relationship between the two units. The Gund diorite may therefore represent an intrusive equivalent of the andesite lavas of McClusky Creek.

Walti intermediate porphyritic dikes (Twp)

Homblende from sample KS095 yielded a plateau of only two steps (with 61.2% of the total ³⁹Ar released) of 35.68±0.04 (MSWD=1.11). This is older than sample KS126's U-Pb zircon weighted mean age of 34.96±0.38 (MSWD=2.8), however the homblende age is captured within the range of zircon ages (Figure 67). Sample KS126 is from a dike cutting the interior of the Mud Springs pluton. Sample KS095 is from a dike cutting the Paleozoic rocks, 500 m west of the Mud Springs, and <100 m east of outcrops of the Walti diorite. The Walti porphyritic dikes that cut the Mud Springs are pervasively altered to chlorite, sericite, epidote, and calcite, and were not viable for ⁴⁰Ar/³⁹Ar dating. Sample KS095 contained biotite that was altered to chlorite and epidote, oxidized and chloritized mafic glomerocrysts, and resorbed K-feldspar and quartz phenocrysts suggesting disequilibrium. Homblende phenocrysts had minor alteration to clay, and had inclusions of groundmass (Figure 56B), which may explain the climbing and then descending ⁴⁰Ar/³⁹Ar spectrum(Figure 55D). Steps with younger age and higher K/Ca could reflect the analysis of the altered rims and groundmass inclusions.

As discussed previously, the Walti intermediate porphyritic dikes are interpreted as related to the magmatic system of the Walti pluton. Phenocryst assemblages in the dikes are variable but similar to the Walti pluton, with consistent features such as a porphyritic texture with widely spaced coarse (>5mm) plagioclase of similar anorthite content (Figure 14). Their major and trace element concentrations in Walti dikes were also variable but typically plotted along a line joining the Walti diorite and Walti quartz monzonite, possibly representing a general differentiation trend or mixing line (Figure 42; Figure 44). Field evidence of their connection includes the presence of >1 cm K-feldspar megacrysts in outcrops of the Walti diorite only 80 m west of the sample KS095 of the Walti dikes. K-feldspar megacrysts were not observed in any other part of the Walti intermediate porphyritic dike also had >1 cm K-feldspar megacrysts that were resorbed and partly rimmed to K-bearing mafic minerals like biotite (Figure 30). This strongly suggests the dike was a direct injection of melt from the diorite and carried the same phenocryst assemblage but was subject to disequilibrium during cooling.

Sample KS126 in a Walti intermediate porphyritic dike was one of two samples dated by U-Pb that had high-U zircons (1000s ppm vs. 100s ppm) (Figure 49A). Uranium was high enough in KS126 zircon to cause Pb loss which made a younger integrated age before the high-U zircon analyses were omitted from the age calculation. High-U zircons are typically observed in igneous rocks derived from evolved or highly differentiated melts. However, causes for high U and other trace elements in zircon may include local disequilibrium and poor diffusion rates. High-U zircons are unlikely to crystallize in equilibrium with its melt, as studied zircon-melt partition coefficients require felsic melts to have unreasonably high (>100 ppm) U (Xiang et al., 2011). Whole-rock geochemistry of igneous rocks at Keystone have <5 ppm U, with few samples as high as 9.5 ppm. Instead, high-U zircons likely crystallized with local disequilibrium caused by rapid growth relative to diffusion. Samples from the Walti intermediate porphyritic dikes often show evidence of magma disequilibrium, with resorbed quartz and feldspar phenocrysts mantled by biotite probably caused by reaction with a relatively mafic melt (Figure 30).

The Walti intermediate porphyritic dikes most likely represent roof dikes of the Walti pluton. The pluton was mostly emplaced into lower plate carbonate rocks with the diorite phases partly intruding the upper plate siliciclastics. Outcrops of the dikes are found in stratigraphic horizons above the pluton, and in the shallowly emplaced Mud Springs pluton. Individual dikes likely formed at different times during the development of the composite pluton, producing the variable compositions and phenocryst assemblages. The hornblende cooling age from sample KS095 suggests it may have been one of the first dikes to intrude, and its age overlaps with the rhyolite porphyry. Outcrops of the dikes are found close to the southern and western margins of the rhyolite porphyry, but none cut the rhyolite itself.

Walti diorite (Twd)

Four samples of the Walti diorite were dated by ⁴⁰Ar/³⁹Ar on plagioclase. Three samples were from different bodies along the composite pluton's eastern margin, which reflect the top of the east-tilted pluton where the diorites intrude upper plate rocks. The fourth sample was from an enclave of diorite within the quartz monzonite body. The Walti diorite typically exhibits chloritization of mafic minerals, resulting in no viable hornblende or biotite for ⁴⁰Ar/³⁹Ar dating. Plagioclase from all samples were relatively unaltered, with sample KS068 having near pristine plagioclase phenocrysts (Figure 54D). Given the low closure temperature of plagioclase and geologic context of a composite pluton, the wide spread of ages is not surprising. Interestingly, the three separate samples from the Walti diorite marginal phases overlap in age, having a cumulative weighted mean age of 35.39±0.11 Ma, whereas the sample from the enclave is younger at 34.81±0.42 Ma. Mafic enclaves are recognized in other composite plutons, with models proposing they are early crystal accumulations cogenetic with a progressively evolving host granitoid (Zhang et al., 2014; Zhang and Zhao, 2017). A similar model is called upon for the relationship between the Walti diorite and Walti quartz monzonite (Figure 68). The cooling age of sample KS068 from the enclave may reflect the cooling of the surrounding Walti quartz monzonite phase, which crystallized after the more mafic diorite phase.

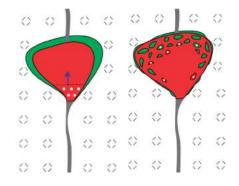


Figure 68. Schematic cartoon illustrating the formation of a granitoid pluton (red) and its cogenetic dioritic enclaves (green). Modified from Zhang and Zhao (2017).

Walti quartz monzonite (Twq)

Sample KS137 was collected from drill core at 530 m. Biotite was coarse and unaltered, yet the ⁴⁰Ar/³⁹Ar spectrumdid not yield a plateau and had variable K/Ca for every step (Figure 57). An isochron through the final four steps yielded an age of 35.52±0.07 Ma, which is older than but overlaps within uncertainty with the U-Pb zircon age of 35.05±0.41 Ma; the biotite age is also within the range of individual zircon ages (Figure 67). The isochron age, however, does not overlap with a published K-Ar age of biotite from the Walti pluton at 34.2±0.7 Ma (Silberman and McKee, 1971; recalculated using decay constants and isotopic abundances of Steiger and Jäger (1977)).

The biotite age is as old as some of the plagioclase ages from the Walti diorite, and may reflect simultaneous cooling of different parts of the composite pluton. An aeromagnetic survey provided by U.S. Gold Corp. shows a ~25 km² high magnetic anomaly centered on the Walti, which extends past its surface exposure (Figure 69). Sample KS137 is located near the northernmost extent of this magnetic anomaly, and likely represents the lateral limit of the pluton at depth. This distal area of the pluton therefore likely crystallized and cooled first whereas the interior of the pluton remained relatively hotter.

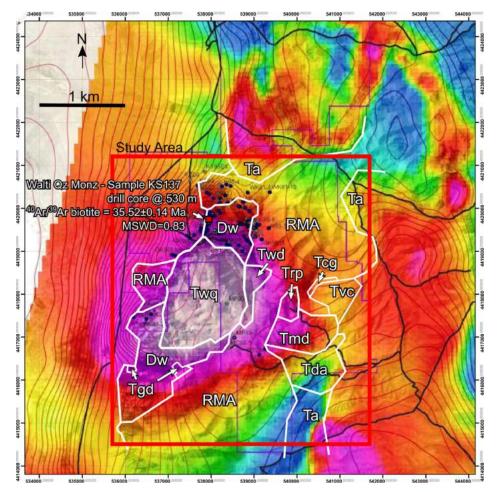


Figure 69. Reduced-to-pole aeromagnetic map of the Keystone project. Thesis study area outlined in red. Simplified geologic map units outlined in white. The magnetic high is centered on the Walti pluton (Twq), and the anomaly continues beyond the pluton's surface exposure, indicating a much larger intrusion at depth. Location of sample KS137 indicated by red square. Walti pluton was intercepted 530 m below surface and was dated by ⁴⁰Ar³⁹Ar on biotite. Adjacent magnetic high-low chatters are products of the andesite of McClusky Creek (Ta), and extend past the study area.

Rhyolite porphyry (Trp)

Sample KS098 was collected from the unaltered interior of the rhyolite porphyry intrusion. Although the margins of the intrusion exhibit pervasive sericitic alteration and bleaching, sample KS098's feldspars were intact and sanidine was acceptable for ⁴⁰Ar/³⁹Ar dating. The single-crystal total fusion age of 35.43±0.06 Ma (MSWD=11.90) is the best approximation for the emplacement age. Interestingly, the U-Pb zircon weighted mean age is significantly older at 36.17±0.33 Ma (MSWD=3.6). However, when considering the individual zircon analyses, the sanidine age falls within the range of zircon ages.

The sample KS044 of the rhyolite porphyry unit (Trp) was one of two samples dated by U-Pb that had high-U zircons (1000s ppm vs. 100s ppm) (Figure 49A). As mentioned before, causes for high U and other trace elements in zircon include local disequilibrium and poor diffusion rates. The slightly older U-Pb zircon age may record crystallization during magma ascent, and the emplacement age is best approximated by the ⁴⁰Ar/³⁹Ar sanidine age. The older zircon ages of the rhyolite porphyry suggest the melt evolved or inherited zircons from an older magmatic body, possibly unrelated to the Walti. Since the rhyolite porphyry was preferentially altered over the adjacent Mud Springs diorite and nearby Walti intermediate porphyritic dikes, both of which are older, the rhyolite likely intruded into a major structure that also controlled hydrothermal fluids.

Trachyandesite dikes(Tta)

Zircons from sample KS025 of the trachyandesite had a wide range of ages that overlap with the Walti quartz monzonite (Figure 67). Dikes of the trachyandesite were found only cutting rocks of the Roberts Mountain allochthon, so their relationship with the Walti pluton is unclear. The dikes also only crop out in the northwest side of the study area. These rocks have a unique texture, geochemistry, and alteration with enriched K₂O and depleted CaO and Na₂O. Little beyond their Eocene age can be confirmed.

Dacite agglomerate (Tda)

The dacite is different from all other Eocene rocks with unique geochemistry suggesting its melt may have incorporated more crust than other rocks. Evidence suggesting a greater crustal involvement in its magma genesis include its high alumina saturation index (ASI), which plots in the peraluminous field, well beyond other fresh igneous rocks at Keystone. The dacite also has higher Nb/Y and has a subdued Eu anomaly, both of which are unusual compared to other more evolved Eocene igneous rocks at Keystone. The presence of zircons possibly younger than those from any other unit (\sim 34.68 \pm 0.54 Ma) support it being the last Eocene magmatic event at Keystone (Figure 67). This contradicts field constraints for the agglomerate since it it underlies the widespread andesite of McClusky Creek. However, the textures of the dacite, including its breccia texture, reflect a volcanic and/or subvolcanic origin, thus allowing for a partintrusion, part-volcanic dome emplacement style. Dikes related to the dacite have similar alteration to dikes of the andesite of McClusky Creek, suggesting both had intruded prior to hydrothermal activity. Mapping at greater detail may resolve different lavas and pyroclastic units within the agglomerate and provide context for sample KS051's U-Pb zircon results.

Relationship of Eocene magmatism at Keystone to regional magmatism

The Keystone igneous center is similar in age, duration of magmatism, and composition to other Eocene centers that are widespread in north-central Nevada and is consistent with the regional southwestward sweep of calc-alkaline arc magmatism in Nevada from ~44 to 34 Ma (e.g., Henry, 2008; Christiansen and Yeats, 1992). Magmatism at Keystone spanned ~36.0-34.7 Ma (Table 4), a ~1.3 Ma span during which numerous intrusions and volcanic rocks ranging in composition from intermediate to silicic were emplaced. The span of magmatism at Keystone is comparable to other moderate to large Eocene centers in north-central Nevada. For example, magmatism in the southern Carlin trend in the Piñon Range lasted about 1.0 Ma (Hollingsworth et al., 2017), and magmatism at nearby Cortez and Fye Canyon spanned from ~35.7-35.3 Ma for early rhyolite dikes and lavas with brief Caetano caldera-related magmatism lasting only from ~33.9-33.7 Ma (Colgan et al., 2011). No mafic rocks beyond the alkaline basalts of the Valmy and Comus were found at Keystone, which is consistent with the dominantly andesitic to dacitic volcanic fields that characterize northeast Nevada during the Eocene. This regional style of magmatism transitioned at ~34 Ma to felsic caldera-forming magmatism that continued southwestward,

119

culminating in the Oligocene ignimbrite flareup. Keystone lies at the southwestern end of a "caldera gap" in northeastern Nevada (Figure 70). Indeed, the ~34 Ma Caetano and Hall Creek calderas are among the first to mark this transition and both are only 25 km from Keystone (Figure 71).

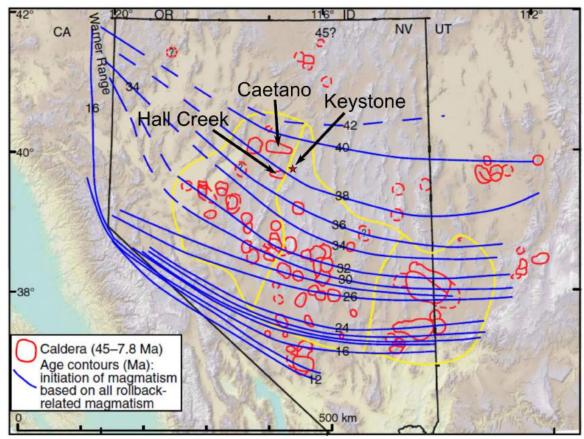


Figure 70. Regional map of Eocene through Miocene magmatism and calderas of Nevada and Utah. Location of Keystone marked by red star. Nearby Caetano and Hall Creek calderas indicated, both of which are ~34 Ma. Keystone lies at the southwest end of the "caldera gap" in northeast Nevada, at the transition from intrusive/effusive to pyroclastic magmatism. Modified from Henry and John (2013).

Thirty km southeast of Keystone is the ~35.92-36.15 Ma (Long et al., 2014) Mt. Hope igneous complex and associated porphyry molybdenum deposit (Figure 71; Westra and Riedell, 1995). At Mt. Hope, numerous intrusions and volcanics are relatively silicic (high-Si rhyolite to dacite) compared to rocks at Keystone. Small-volume rhyolitic tuffs surround rhyolite porphyry intrusions composed of subhedral to euhedral quartz, K-feldspar, and plagioclase phenocrysts. The widely contrasting styles of hydrothermal activity between Mt. Hope and Keystone is interesting, especially considering that their ages are quite

similar. Neither porphyry mineralization nor molybdenite were observed at Keystone, suggesting that strongly contrasting magmatic composition and possibly emplacement style and efficiency of fluid extraction and focusing (e.g. high fluorine and highly evolved rhyolitic apophyses; Audétat and Li, 2017) contributed to the differences.

Closer to magmatic activity at Keystone are quartz porphyry dikes and sills in and near the Cortez Hills Carlin-type gold deposit, 25 km north of Keystone (Figure 71). Several ⁴⁰Ar/³⁹Ar dates of sanidine from these dikes repeatedly overlap in time with igneous rocks at Keystone and range from 35.29±0.08 to 35.69±0.06 Ma (Artz, 2004; Colgan et al., 2011). Interestingly, these ages overlap in time with the rhyolite porphyry Trp at Keystone (35.43±0.06 Ma) as well as rhyolite lava from the large silicic center at Fye Canyon, half way between Cortez and Keystone. The abundant quartz porphyry dikes at Cortez are rhyolitic and commonly have quartz, sanidine, plagioclase, and biotite phenocrysts, like the Trp rhyolite at Keystone. Importantly, although most quartz porphyry dikes crosscut the Carlin-type mineralization at Cortez Hills, a few dikes are altered and contain realgar, pyrite, and low Au concentrations. One such dike with pyrite veinlets and disseminated realgar and orpiment gave a ${}^{40}Ar/{}^{39}Ar$ age of 35.37±0.07 Ma on igneous biotite, leading to the interpretation that the dikes were emplaced during the late stages of Carlintype mineralization (Henry, 2009; Arbonies et al., 2011). It is possible the rhyolite porphyry Trp was the last intrusion at Keystone, given the larger uncertainties for the U-Pb zircon ages of the trachyandesite and dacite agglomerate (Figure 67). The quartz porphyry dikes at Cortez predated major explosive silicic volcanism associated with the Caetano caldera by about 1.3 Ma, suggesting that the two are unrelated, or if related, there was a substantial lull between activity. Compositionally the Cortez center is much more silicic overall than the Keystone center. The quartz-phyric rhyolite dikes at Cortez are not obviously associated with less evolved intermediate rocks, which are abundant at Keystone. This compositional difference in concert with the depth that major intrusions were emplaced in the upper crust may have influenced the Eocene metallogeny of the Battle Mountain-Eureka mineral belt.

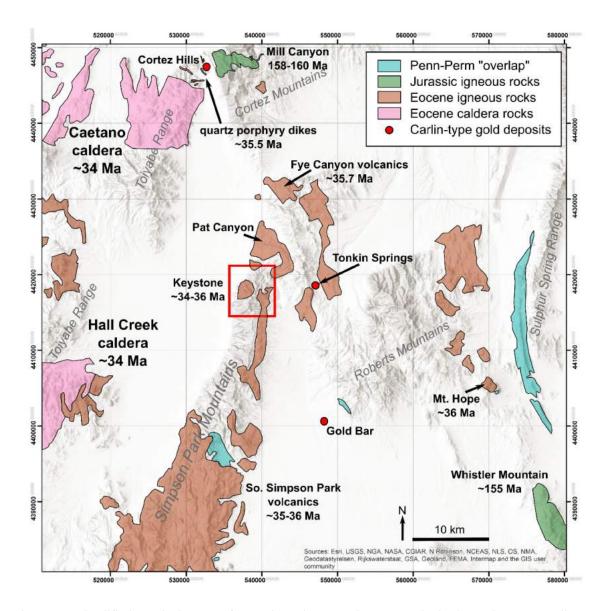


Figure 71. Simplified geologic map of Jurassic and Eocene igneous rocks in the region surrounding Keystone. Miocene volcanics omitted for clarity. Study area outlined in red box. Locations discussed in text. Pennsylvanian-Permian "overlap" rocks shown for discussion on Cenozoic conglomerates. Radiometric ages are from McKee et al. (1971), Silberman and McKee (1971), Westra and Riedell (1996), Artz (2004), Arbonies et al. (2011), Colgan et al. (2011), and Henry and John (2013). K-Ar ages have been recalculated to decay constants and isotopic abundances after Steiger and Jäger (1977).

Unfortunately, there are few publications on the volcanic fields of the northern and southern Simpson Park Mountains. In the northern Simpson Park Mountains are volcanic rocks of Fye Canyon, 12 km north of Keystone (Figure 71). Rocks here include andesitic, dacitic, and rhyolitic lava flows and domes. 40 Ar/ 39 Ar ages of plagioclase from rhyolite are 35.73 ± 0.06 Ma and 35.82 ± 0.12 Ma, and from

andesite are 34.92 ± 0.37 Ma (Colgan et al., 2011). Undivided volcanics have been mapped in the area surrounding Pat Canyon, immediately north of the Keystone study area. It is likely this area includes an extension of the andesite of McClusky Creek (Ta) mapped at Keystone. Undivided Tertiary volcanics have been mapped south and east of Tonkin Springs, and include rhyolitic to dacitic tephra, ignimbrites, and local lava flows (Noble, 2008, Technical Report on the Tonkin Project, prepared for US Gold Corporation, now McEwen Mining). This area appears to have continuity with the andesite of McClusky Creek, to the west and across McClusky Pass. A >600 km² Eocene volcanic field covers the southern Simpson Park Mountains (Figure 71; McKee, 1968). Most of the rocks are andesite to dacite flows and rhyolitic to dacitic intrusions. K-Ar ages of biotite from a dacite flow and hornblende from an andesite flow are 35.4 and 36.3 Ma, respectively (McKee et al., 1971; recalculated to decay constants and isotopic abundances after Steiger and Jäger (1977), no age uncertainties provided). The overlapping ages suggest volcanics across the Simpson Park Mountains are coeval with magmatic activity at Keystone. Three sizeable intrusions (1 to 3 km²) of dacite and rhyolite composition occur in the central and southern Simpson Park Mountains (McKee, 1968), but intrusions are rare owing to an abundance of intermediate lavas. Certainly, the large volume of intermediate lavas requires large intrusions at depth however, the great thickness of lavas and/or insufficient extension and/or erosion have yet to expose Eocene intrusions in underlying, covered Paleozoic strata.

Hydrothermal activity and distribution at Keystone

Hydrothermal alteration of Eocene age at Keystone is broadly divided into three categories according to styles (Table 5): 1) high-temperature alteration associated primarily with the Walti pluton, resulting in skarn, endoskarn, and sodic-calcic alteration, 2) relatively low-temperature acidic alteration present in Paleozoic rocks along major structures and a few igneous units including andesite dikes of McClusky Creek (Ta), dacite dikes (Twp), volcaniclastic rocks (Tvc), and the rhyolite porphyry (Trp), and 3) chlorite-epidote-calcite alteration present throughout many of the intrusions, which is classified as propylitic alteration.

Alteration	Distribution	Minerals and Textures	Geochemistry
	High-temperature		
Skarn	Historic Keystone mine at northem margin of Walti in Wenban limestone (Dw). Minor occurrences at limestone roof pendants of the Walti.	Garnet, quartz, calcite, and base metal sulfide mineralization including pyrite, chalcopyrite, and galena	+Cu, Pb, Zn, Fe, S
Skarnoid/ Hornfels	Thermal halo around major intrusions. Affects both upper and lower plate rocks.	Fine-grained garnet and pyroxene in calcareous rocks, resulting in tan to green color. Hardening of siliciclastics.	No significant change in whole-rock chemistry
Endoskarn	Local to intrusion-marble contacts in the Walti (T wq+T wd), Mud Springs (T md), and Gund (T gd)	Oligoclase, diopside, titanite	+ Ca, Na -Si, Fe
Sodic-calcic	Common throughout Walti pluton (Twq+Twd)	Oligoclase to albite, diopside, actinolite, tremolite, epidote, calcite	+ Ca, Na -Si, Fe
	Low-temperature		
Epithermal	Pervasive in upper plate rocks and dikes cutting the upper plate, Tertiary conglomerate (Tcg), volcaniclastics and aphyric rhyolite (Tvc), and rhyolite porphyry (Trp).	Quartz veins, oxidized and silicified breccias, pyrite, kaolinite, illite	+As, Hg, Bi, W, S, Se, Tl, Sb, S, Ba -Ca, Na, Sr
Carlin-style	Along upper-lower plate transitions, lower plate carbonates, andesite dikes (Tad) cutting lower plate.	Silicified breccias, jasperoid, decarbonatized limestone, pyrite, illite	+Au, As, Hg, Sb, Tl, S, Se, Ba, W, K, Rb -Na, Ca, Sr
Propylitic	Typical of all intrusions, most pervasive in Mud Springs (Tmd), Gund (Tgd), and Walti dikes (Twp). Common in the Walti pluton.		No significant change in whole-rock chemistry

Table 5. Summary of hydrothermal alteration

Base metal skarn mineralization is restricted to the limestone contacting the Walti pluton and is undoubtedly a product of magmatic-hydrothermal fluids from the Walti system. Both the diorite and quartz monzonite phases show endoskarn alteration proximal to marble contacts, and it is not clear which phase generated the fluids responsible for skarn mineralization. The diorite phase occurs sporadically throughout the pluton as enclaves, yet is ubiquitous in its proximity to skarn occurrences.

Throughout the interior of the Walti pluton are broad zones of sodic-calcic alteration of varying intensity, expressed as an increase in Na₂O and CaO, and decrease in FeO and SiO₂. Outcrops are white to light gray and resistant to weathering, in contrast with clay-altered rocks that are also bleached but weather more easily. This type of alteration may represent downwelling and warming of meteoric saline fluids, examples of which are widespread in Nevada including the Jurassic Yerington porphyry (Carten, 1986) and several Eocene intrusions in the Battle Mountain district (King, 2017). Like associated skarn alteration, this hydrothermal alteration is tied to the emplacement and cooling of the Walti pluton.

Low-temperature clay and quartz alteration affected the rhyolite porphyry (Trp), volcaniclastic and aphyric rhyolite unit (Tvc), upper plate rocks following the trace of Tad andesite dike outcrops, and faulted lower and upper plate rocks near and within the Keystone window (Plate 1). Drilling by U.S. Gold Corp. frequently intercepted mineralized breccias and jasperoid at the upper to lower plate transition, and argillized dikes adjacent to decarbonatized lower plate carbonate, both of which contain anomalous gold and high concentrations of As, Sb, Hg, and/or Tl; this alteration and mineralization resembles Carlin-type mineralization where it occurs in Paleozoic sedimentary rocks and altered Eocene dikes. The clays associated with altered dikes are illite and kaolinite, determined by SWIR spectroscopy.

Illite from two samples of altered andesite dikes of McClusky Creek yielded forced plateau ⁴⁰Ar/³⁹Ar ages of 35.71±0.12 Ma and 35.54±0.06 Ma (Figure 65), similar to but slightly older than the host lavas. Three other illite samples yielded ages that were older than their host rocks' igneous ages, but were also Eocene (Figure 65). Problems associated with dating fine-grained, low-temperature illite include excess argon, induced ³⁹Ar recoil or loss from neutron bombardment in a reactor, and complications of dating mixed-layer illite-smectite. All of these can lead to erroneous ages and the first two are commonly implicated in older-than-reasonable apparent ages. Based on dating of igneous minerals in the same units, it is certain that the true age of illites at Keystone is younger than their apparent ages, and likely, illite ages are similar to the age of Eocene magmatic activity. The sanidine age of the rhyolite porphyry provides a maximum age constraint for hydrothermal activity affecting it. Since the Walti intermediate porphyritic dikes do not have this alteration, this activity is likely unrelated to emplacement of the Walti pluton.

Propylitic alteration is widespread across all igneous units. The Walti intermediate porphyritic dikes were typically altered to chlorite and calcite, with minor sericitization. The Mud Springs pluton is similarly chloritized because of widespread propylitic alteration, and locally intense calcite and epidote alteration proximal to outcrops of marble xenoliths. Where not affected by sodic-calcic alteration, the Walti pluton typically has mafic minerals altered to chlorite and/or epidote.

To summarize, skarn mineralization associated with emplacement of the Walti may overlap in time with low-temperature alteration, but there is no evidence for a spatial relationship. The rhyolite porphyry was preferentially altered over the adjacent Mud Springs and Walti intermediate porphyritic dikes, both of which are older. This suggests the rhyolite porphyry intruded a major structure that also controlled hydrothermal fluids responsible for epithermal alteration and potentially Carlin-type alteration of the dikes to the north and at depth. Characterization of the continuum between epithermal and Carlin-type alteration requires further study.

Structures and depth of emplacement

Geologic mapping combined with geochronology provide important constraints on the depth of intrusion and mineralization at Keystone (Figure 72). The major paleosurface between Paleozoic strata and overlying late Eocene conglomerate and volcaniclastic rocks is no older than 35.72±0.32 Ma. A disconformity or very slight angular unconformity is present between Paleozoic and Cenozoic units suggesting all bedded rocks were close to horizontal at Keystone prior to doming by intrusion and later (post-late Eocene) tilting. The andesite lavas of McClusky Creek are the oldest unit dated by ⁴⁰Ar/³⁹Ar, and offer a higher resolution constraint for the paleosurface at 35.99±0.04 Ma before emplacement of any intrusions at Keystone.

Two problems arise with determining the depth of emplacement of various intrusions. First, it is unclear how thick the andesite of McClusky Creek is. Much of it is buried by Tertiary to Quaternary gravels that fill the valley east of Keystone (unit QToa). A foliation measurement in the andesite suggests the lavas are approximately concordant with underlying upper-plate rocks; if so, then the thickness of the andesite is no less than ~300 m. Similarly, the Tertiary conglomerate (Tcg) and volcaniclastics units (Tvc) have a combined thickness that is no less than ~250 m thick where exposed just west of upper McClusky Creek, although the localized nature of the Tcg and Tvc units suggest they were likely deposited in a paleochannel, unlike the McClusky andesites, which are laterally extensive. The observation that tilts in Eocene sedimentary and volcanic rocks and underlying Paleozoic sedimentary rocks are similar suggests that all rocks were initially domed by intrusion and subsequently tilted east by major late Cenozoic normal faulting.

Second, there is evidence of internal thrusts or duplexing in the Roberts Mountains allochthon, changing the thickness of the Valmy over moderate lateral distances at Keystone. The occurrence of Comus

also confounds how thick the upper plate may be in that area, and the nature of the contact with the lower plate is unknown. It is possible the Comus occurs as an internal wedge within the allochthon, as shown schematically (Figure 72), or it could lie directly above the lower plate. Approximate true thicknesses of the Comus and Valmy as determined by detailed mapping and stratigraphy (Chapin, 2017, unpublished report for U.S. Gold Corp.) are 300 and 330 m, respectively.

Taking into account sources of uncertainty in determining average unit thicknesses, the combined estimated thickness of the Paleozoic upper-plate sedimentary rocks and overlying Eocene conglomerate, volcaniclastic, and volcanic rocks above the Walti pluton is ~1180 m (Figure 72); this value is likely a minimum considering some degree of Eocene erosion that predates units Tcg, Tvc, and Ta. It is possible the thicknesses of some units are overestimated, in which case the total stratal thickness, and therefore, the pre-tilt depth to the top of the Walti pluton, would be less.

Mineralized skarn at the historic Keystone mine occurs adjacent to the Walti in the upper Wenban approximately 240 m beneath the base of the upper plate, thus at a minimum Eocene paleodepth of ~1420 m. The Gund diorite stock occupies a similar horizon in the Wenban to the Keystone skarn. However, the presence of Elder sandstone (Figure 72, unit "Se"), which is absent to the north, above the Gund, suggests a thicker allochthon to the south. The Gund stock may therefore, have been emplaced at ~200 m greater depth than the Walti. The Gund sill, farther to the west and therefore lower in the east-tilted section, intrudes a thrust fault within the lower plate and therefore, has an extra ~830 m thickness of repeated section of overlying Wenban and Horse Canyon units, resulting in a minimum emplacement depth of ~2010 m. The tops of other intrusions including the Mud Springs diorite, the rhyolite porphyry, and the dacite agglomerate (units Tmd, Trp, and Tda), cut only the Valmy Formation and lie very near the Eocene unconformity; therefore, the tops of these intrusions were likely emplaced within 1000 m of the Eocene surface.

Carlin-type gold mineralization occurs in several locations at Keystone. Generally, mineralization occurs in the Horse Canyon unit as well as near the top of the Wenban Limestone distal to the hornfels aureole. Based on these observations and taking into account the limitations of depth estimates because of uncertainties in absolute unit thicknesses, Carlin-type gold mineralization at Keystone likely occurred at

Eocene paleodepths of between 1 and 2 km, a range consistent with estimates from major districts such as the Carlin trend (e.g., Hollingsworth et al., 2017; Ressel and Henry, 2006; Cline et al., 2005; Ressel et al., 2000).

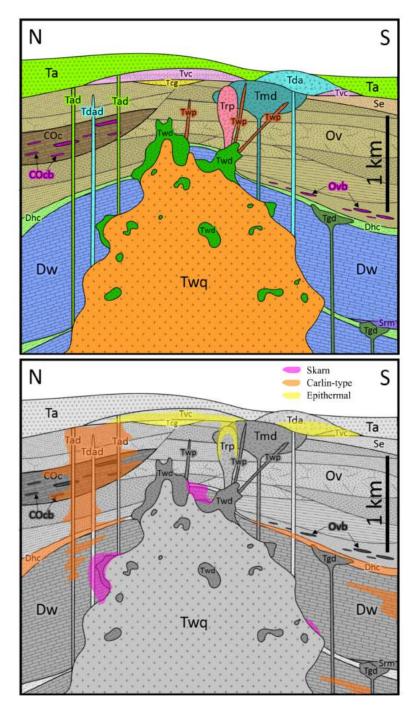


Figure 72. Top: schematic cross section of rocks at Keystone in the Eocene. Bottom: approximate locations of skarn, Carlin-type, and epithermal mineralization. Depth of emplacement and mineralization are discussed in text. Abbreviations are same as map units in geologic map (Plate 1).

Doming of sedimentary rocks at Keystone is supported by beds dipping in all directions away from the Walti pluton. Indeed, it is likely the Walti was responsible for doming and aided exposure of lower plate rocks after tilting caused by extension. Further study of sedimentary structures is required to rule out involvement of any folding or shortening during the Antler or later Mesozoic orogenies for the window. A major range front fault runs along the west side of Keystone, but the presence of older gravels along McClusky Creek (QToa) suggests earlier faulting and extension on the range's eastern side. The abundance of igneous clasts in these gravels supports major extension postdating igneous activity at Keystone.

Eocene conglomerate - its recognition and significance

Chert-quartzite pebble to cobble conglomerates are commonly interpreted as Paleozoic Antler "overlap" sequence in northeastern Nevada. After Late Devonian-Early Mississippian Antler thrusting, siliceous rocks of the Antler highlands eroded and deposited coarse clastic material into submarine fans, proximal delta complexes, and remnants of the Antler foreland basin to the east. Permian limestone, conglomerate, and shale of the Garden Valley Formation is one example of the "overlap" and has been mapped in the Roberts Mountains and Sulphur Spring Range east of Keystone. In the Simpson Park Mountains, Pennsylvanian-Permian conglomerates and limestone crop out 20 km south of Keystone (Figure 71). At Keystone, chert-quartzite conglomerates (unit Tcg) that in places resemble Paleozoic overlap, rest above upper-plate rocks of the Valmy Formation. Tcg's discontinuous spatial distribution suggests it likely filled paleochannels. On further mapping, it was recognized that clast compositions in the conglomerate changed drastically from ridge to ridge. Some conglomerate contained obvious porphyritic felsic igneous clasts, whereas other conglomerate and coarse sandstone contained a preponderance of clayaltered clasts considered to be derived from alteration of feldspar in igneous-derived material. The Tcg unit, therefore, was clearly not Paleozoic overlap, although initial mapping of its chert-quartzite-dominant facies suggested it was. U-Pb detrital zircon dating of the Tcg conglomerate that rests on Ordovician Valmy in an area that contains abundant igneous clasts, produced mostly Eocene zircons and resulted in a maximum depositional age of 35.62±0.32 Ma. This conglomerate is unequivocally not Paleozoic "overlap", but an Eocene basal conglomerate. The Tertiary conglomerate not only marks the paleosurface in the Eocene but also indicates a rapidly eroding Eocene highland comprised of upper-plate strata and abundant Eocene volcanic rocks. The localized occurrence of unit Tcg north of Mud Springs also suggests its deposits represent a paleochannel through which siliceous rocks of the RMA and abundant igneous material was transported from proximal sources. The Tertiary conglomerate is hydrothermally altered, with red limonite and local silicification; it therefore predates hydrothermal activity at Keystone. Silurian Elder and Devonian Slaven have been mapped to the south of Keystone. The fact that Tertiary conglomerate rests on siltstone of the Valmy and not the younger Elder or Slaven suggests there was significant pre-Eocene erosion of the RMA, or more likely, Paleozoic or Mesozoic deformation that disrupted the upper-plate strata.

OIB volcanism and correlation with the Comus Formation

Biostratigraphy and mapping support the presence of Ordovician Valmy and Cambrian-Ordovician Comus formations in the RMA at Keystone (Table 1; T. Chapin, 2017, unpublished report for U.S. Gold Corp.). Basalts within these two formations were studied for their map distribution, petrography, geochemistry, and isotopic dating. All basalts are alkaline and contain fairly abundant hydrous mafic minerals, biotite or rarely, amphibole, in addition to olivine and orthopyroxene, where they have not been severely altered. Geochemically, the alkali basalts at Keystone have very high concentrations of compatible and incompatible trace elements. The chemistry of Keystone basalts is uncharacteristic of most seafloor basalt or arc-related basalt, both of which generally derive from depleted mantle sources, but it is consistent with ocean island basalts (OIBs). The presence of biotite and rare hornblende are consistent with the hydrous, alkalic composition of some OIBs. 40 Ar/ 39 Ar dating of biotite from a basalt intercalated with limestone of the Valmy Formation yielded a plateau age of 466.1±0.7 Ma, which is Middle Ordovician. The age is consistent with fossil ages (Table 1) from intercalated sedimentary rocks. The geologic setting of the Keystone OIBs is uncertain. However, similar basalt-limestone units of Cambrian and Ordovician age exist elsewhere in north-central Nevada. Bloomstein et al. (1991) provided a depositional model for the Comus at the Twin Creeks mine area of the Osgood Mountains involving a Late Cambrian to Early Ordovician carbonate-mantled basaltic seamount, in which intraplate submarine volcanic rocks may have accumulated to shallow enough depths for a carbonate depositional system to develop. At Twin Creeks, the Comus lies in the footwall of a major thrust and has therefore been interpreted as autochthonous or parautochthonous. At Keystone, in contrast, Comus-like alkali basaltlimestone exists entirely within the deformed sequence comprising the RMA and was therefore transported from the west, very likely along Antler-affinity thrusts.

Similar ages, lithologies, and geochemistry between Keystone alkali basalts and the alkali basalts of the Comus Formation in the Osgood Mountains, 150 km to the north-northwest, are permissive for their tentative correlation. Such a correlation is particularly important, because the Comus is the principal host unit for Carlin-type deposits in the Getchell trend. This also implies intraplate volcanism and carbonate-capped seamounts may have been much more extensive in Lower Paleozoic basinal rocks. The Cambrian-Ordovician Hales Formation at Tonkin Springs, a cluster of Carlin-type gold deposits located only 8 km east of Keystone, may also be correlative with the Comus (Noble, 2008, Technical Report on the Tonkin Project, prepared for U.S. Gold Corporation (McEwen Mining)). The Hales is described as sandy limestone and calcareous siltstone with mafic tuffs and sills. These rocks are important hosts for Carlin-type deposits and future studies on intraplate volcanism in the Paleozoic should include Keystone.

Conclusions

Keystone is an early-stage exploration project for Carlin-type gold deposits in the Battle Mountain-Eureka mineral belt. The property includes a very well exposed Eocene igneous center centered on the Keystone lower-plate carbonate window. This study details the igneous geology of the Keystone property and provides 25 new isotopic ages from 11 Eocene volcanic and intrusive units, one Eocene conglomerate, and one Ordovician volcanic unit. In addition, the study assesses the relationship of Eocene magmatism to the formation of Carlin-type and other hydrothermal ore deposits.

Detailed mapping and petrography of igneous rocks at Keystone has not been documented before this thesis. The only mafic rocks found at Keystone are Cambrian to Ordovician alkaline basalts that formed during deposition of the Comus and Valmy formations, and were later tectonically transported to the Keystone area during Late Devonian/Early Mississippian Antler thrusting. Ordovician basalt is dated at 466.1 ± 0.7 Ma, corroborating fossil data from intercalated limestone. The ages, lithologic, and geochemical similarities of these Keystone rocks to the Comus Formation in the Osgood Mountains is permissive for their correlation and therefore implies that the Comus seamounts may have been much more extensive. This is particularly important, because the Comus Formation is the principal host in the Getchell trend Carlin-type deposits.

Results of this study also identified conglomeratic rocks commonly correlated elsewhere with the Paleozoic Antler overlap sequence based on the abundance of RMA-derived chert and quartzite clasts as Eocene. The recognition of Eocene coarse clastics at Keystone and in the Carlin Trend (Hollingsworth et al., 2017) is important not only for regional mapping, but also for improving our understanding of the development of Eocene basins, some of which are hydrocarbon-bearing, and for characterizing the switch from late Cretaceous Sevier contraction to an early Cenozoic extensional regime. Basal Eocene conglomerate at Keystone is the oldest exposed Cenozoic unit, and therefore it is used to constrain the Eocene paleosurface, which is useful in estimating the depth that Eocene intrusion and mineralization occurred.

Other than the Ordovician and Cambrian alkali basalts, igneous rocks at Keystone are entirely Eocene, shoshonitic to high-K calc-alkaline, intermediate to felsic, and occur as both volcanics and shallow intrusions emplaced from ~36.0 to 34.7 Ma. Eocene igneous rocks at Keystone are temporally, spatially, and compositionally consistent with other Eocene igneous rocks formed over a broad area of the northern Great Basin. For example, the Keystone rocks fit with the rapid migration of magmatism southwestward during this time in the northern and central Great Basin. Compositionally, the age for Keystone magmatism reflects the last stages of regional intermediate magmatism dominated by shallow intrusion and effusive volcanism, after which magmatism was dominantly silicic and pyroclastic. The pyroclastic character of subsequent magmatism is evident in the nearby ~34 Ma Caetano and Hall Creek calderas. Despite the spatial and temporal proximity of Eocene igneous rocks at Keystone, diverse mineralogic compositions and trace geochemistry support a complex magmatic evolution and possibly varied sources. The early andesite of McClusky Creek, Mud Springs diorite, and Gund diorite are possibly a separate ~36 Ma magmatic systemfrom the ~35.5 Ma Walti intrusion and related rocks. The dacite agglomerate is unique for its high ASI, Nb/Y, and other characteristic, which may reflect a higher degree of crustal involvement.

Geochronology of igneous rocks at Keystone documented by U-Pb zircon and ⁴⁰Ar/³⁹Ar analyses indicates a complex and intense ~1.3 my. pulse of Eocene magmatism. The lower resolution of U-Pb zircon dating by LA-ICP-MS does not allow for detailed age discrimination of specific Eocene magmatic events indicated by cross-cutting relationships, which commonly resulted in overlapping ages. U-Pb dating was still important for dating of hydrothermally altered igneous rocks for their crystallization age, and for establishing that the Keystone area lacks evidence of any Jurassic or Cretaceous magmatic activity, unlike nearby Cortez. High-U zircons also shed light on the evolved nature of the rhyolite porphyry and some Walti intermediate porphyritic dikes. ⁴⁰Ar/³⁹Ar dating does have a high enough resolution to construct a timeline of events.

Felsic tuffaceous volcaniclastics and aphyric rhyolite flows were the first Eocene igneous rocks, determined by field relations as they rest directly on the Tertiary basal conglomerate. Andesite lavas of McClusky Creek followed at 35.99±0.04 Ma. The Mud Springs and Gund diorites were the first intrusions, emplaced at 35.87±0.06 Ma and 35.82±0.08 Ma, respectively. Igneous rocks of the Walti magmatic system followed next, beginning with the Walti intermediate porphyritic dikes at 35.68±0.04 Ma. The Walti is a composite pluton and the ages for the diorite and quartz monzonite phases are 35.51±0.19 Ma and 35.52±0.14 Ma, respectively. The rhyolite porphyry emplaced next, cutting the Mud Springs, at 35.43±0.06 Ma. Interestingly, the rhyolite porphyry had the oldest U-Pb zircon ages, suggesting the melt evolved from an older and deeper magma body, possible unrelated to the Walti. The trachyandesite and dacite agglomerate mark the end of magmatic activity at Keystone, however their ages are poorly constrained because of wide U-Pb zircon uncertainties.

⁴⁰Ar/³⁹Ar dating of hydrothermal illite from low-temperature Carlin-style sedimentary rock-hosted and igneous-hosted epithermal styles of mineralization provided constraints on the hydrothermal activity at Keystone. The illite data, although not highly precise because of inherent difficulties in dating illite, indicate that hydrothermal activity at Keystone was broadly coeval with Eocene magmatism. Based on various geologic and isotopic age data, lower temperature sericitic alteration is possibly associated with the Trp rhyolite porphyry intrusion. The preferred alteration of the rhyolite porphyry over surrounding rocks suggests it intruded a structure that also controlled hydrothermal fluids, which is important for gold exploration. Quartz porphyry dikes at the nearby Cortez Hills Carlin-type gold deposit have been demonstrated as syn-late stage mineralization and are similar to the rhyolite porphyry at Keystone in mineralogy, texture, and age. Although rhyolite at Keystone is similar in composition to abundant dikes at Cortez, differences include the dominance of silicic magmatism at Cortez versus a greater component of rocks with intermediate compositions at Keystone. Pb-Zn-Cu skarn, endoskarn, and other high-temperature alteration are almost certainly related to the emplacement of the Walti pluton, which possibly was the last major magmatic event at Keystone.

Evaluation of the depth that Eocene mineralization occurred using the Eocene unconformity as occurred a guide suggests that Carlin-type gold mineralization formed at paleodepths of approximately 1.2 km, and possibly somewhat more given some degree of pre-mineral Eocene erosion. These depth estimates for Carlin-type deposits are similar to those made from other areas and further support a shallow origin for Carlin-type deposits. The Pb-Zn-Cu skarns at Keystone formed deeper, but probably not much deeper than about 1.5 km paleodepth. The Keystone lower-plate window is cored by the Walti stock, and surrounding

Paleozoic to Eocene rocks dip consistently away from the stock. Thus, the Walti stock likely domed the surrounding rocks because of its shallow emplacement, and is the principal reason for the existence of the Keystone 'window'. The relationship between doming and structures that controlled hydrothermal fluids at Keystone requires further study. Subsequently, the rocks at Keystone have been tilted eastward by probable Neogene normal faulting along the western escarpment of the northwest Simpson Park Mountains.

- Arehart, G.B., Chakurian, A.M., Tretbar, D.R., Christiansen, J.N., McInnes, B.A., and Donelick, R.A.,
 2003, Evaluation of Radioisotope Dating of Carlin-Type Deposits in the Great Basin, Western
 North America, and Implications for Deposit Genesis: Economic Geology v. 98, p. 235–248.
- Arbonies, D. G., Creel, K. D., Jackson, M. L., Steininger, R., and Pennell, B., 2011, Cortez Hills Lower
 Zone discovery and geologic update, in Steininger, R.C., and Pennell, W.H., Great Basin
 Evolution and Metallogeny Symposium: Geological Society of Nevada proceedings, Reno p. 447-462.
- Arney, E., 2013, Structure of the Paleozoic rocks in the Tonkin Summit Quadrangle, Eureka County, Nevada: Unpublished M.S. thesis, California State University, Long Beach, 64 p.
- Artz, Z. J., 2004, Igneous geochronology and petrography of the Cortez-Hills Carlin-type gold deposit, Cortez, Nevada: Unpublished M.Sc. thesis, Las Vegas, NV, University of Nevada Las Vegas, 40 p.
- Audétat, A., and Li, W., 2017, The genesis of Climax-type porphyry Mo deposits: Insights from fluid inclusions and melt inclusions: Ore Geology Reviews, v. 88, p. 436–460.
- Bakken B.M., 1990, Gold mineralization, wall-rock alteration and the geochemical evolution of the hydrothermal system in the main ore body, Carlin Mine, Nevada: Unpublished Ph.D. thesis, Stanford, CA, Stanford University, 236 p.
- Bloomstein, E.I., Massingill, G.L., Parratt, R.L., Peltonen, D.R., 1991, Discovery, geology, and mineralization of the Rabbit Creek gold deposit, Humboldt County, Nevada, in Raines, G.L., Schafer, R.G., and Wilkinson, W.H., eds., Geology and Ore Deposits of the Great Basin Symposium: Geological Society of Nevada, proceedings, v. 2, p. 821-843.
- Breit, F., Ressel, M., Anderson, S., and Muirhead, E., 2005, Geology and gold deposits of the Twin Creeks Mine, Humboldt County, Nevada in Rhoden, R.N., Steininger, R.C., and Vikre, P.G., Window to the World Symposium: Geological Society of Nevada, proceedings, v. 1 p. 431-452.
- Cann, J.R., 1970, Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks: Earth and Planetary Science Letters, v. 10, p. 7–11.

- Cassata, W.S., Renne, P.R., and Shuster, D.L., 2009, Argon diffusion in plagioclase and implications for thermochronometry: A case study from the Bushveld Complex, South Africa: Geochimica et Cosmochimica Acta, v. 73, p. 6600–6612.
- Carten, R.B., 1986, Sodium-calcium metasomatism; chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit: Economic Geology, v. 81, p. 1495–1519.
- Cassel, E.J., Breecker, D.O., Henry, C.D., Larson, T.E., and Stockli, D.F., 2014, Profile of a paleo-orogen: High topography across the present-day Basin and Range from 40 to 23 Ma: Geology, v. 42, p. 1007–1010.
- Christiansen, R.L., and Yeats, R.L., 1992, Post-Laramide geology of the U.S. Cordillerian region: in Burchfiel, B.C., Lipman, P.W., and Zoback, M.L., eds., The Cordillerian Orogen: Conterminous U.S.: Boulder, CO, Geological Society of America, Geology of North America: v. G-3, p. 261– 406.
- Clauer, N., 2013, The K-Ar and ⁴⁰Ar/³⁹Ar methods revisited for dating fine-grained K-bearing clay minerals: Chemical Geology, v. 354, p. 163–185.
- Cline, J.S. and Hofstra, A.H., 2000, Ore fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA: European Journal of Mineralogy, v. 12, p. 195–212.
- Cline, J.S., Hofstra, A.H., Muntean, J.L., Tosdal, R.M., and Hickey, K.A., 2005, Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models: Economic Geology 100th anniversary volume, v. 451, p. 484.
- Colgan, J. P. and Henry, C. D. 2009. Rapid middle Miocene collapse of the Mesozoic orogenic plateau in north-central Nevada: International Geology Review, v. 51, p. 920–961.
- Colgan, J. P., Henry, C.D., John, D.A., 2011, Geologic map of the Caetano caldera, Lander and Eureka Counties, Nevada: Nevada Bureau of Mines and Geology Map 174, 1:75,000, 10 p.
- Cook, H.E., 2015, The evolution and relationship of the western North American Paleozoic carbonate platform and basin depositional environments to Carlin-type gold deposits in the context of carbonate sequence stratigraphy, *in* Pennell, W.M., and Garside, L.J., eds., New concepts and

discoveries, Geological Society of Nevada 2015 Symposium Proceedings: Reno, Nevada, Geological Society of Nevada, p. 1–80.

- Cook, H.E., and Corboy, J.J., 2004, Great Basin Paleozoic Carbonate Platform: Facies, Facies Transitions, Depositional Models, Platform Architecture, Sequence Stratigraphy, and Predictive Mineral Host Models, U.S. Geological Survey Open-File Report 2004-1078, 129 p.
- Crafford, A.E.J., 2008, Paleozoic tectonic domains of Nevada: An interpretive discussion to accompany the geologic map of Nevada: Geosphere, v. 4, p. 260–291.
- Dickinson, W.R., 2006, Geotectonic evolution of the Great Basin: Geosphere, v. 2, p. 353.
- Espell, R.A., and Rich, T.B., 1991, Geology and mineralization of the Tonkin Springs mining district, in Buffa, R.H., and Coyner, A.R., eds., Geology and Ore Deposits of the Great Basin Symposium: Field Trip Guidebook Compendium, v. 2, p. 949–958.
- Fair, C.L., 2012, Structure of the Roberts Mountains allochthon in the Three Bar Ranch quadrangle, Roberts Mountains, Eureka County, Nevada: Unpublished M.S. thesis, California State University, Long Beach, 104 p.
- Ferguson, H.G., Roberts, R.J., and Muller, S.W., 1952, Geology of the Golconda quadrangle, Nevada: U.S. Geological Survey Geologic Quadrangle Map GQ15, scale 1:125,000.
- Finney, S.C., Noble, P., and Cluer, J.K., 2000, Lower Paleozoic stratigraphy and structure of central Nevada: Comparisons and contrasts between the lower and upper plates of the Roberts Mountains thrust, *in* GSA Field Guide 2: Great Basin and Sierra Nevada, Geological Society of America, v. 2, p. 279–300.
- Finney, S.C., Kelty, T., Fair, C., and Arney, E., 2015, Tectonic Erratics Remarkable exotic blocks emplaced by the Henderson thrust during the Sonoma Orogeny, Eureka County Nevada, in Pennell, W. M. and Garside, L. J. eds., New Concepts and Discoveries, Geological Society of Nevada 2015 Symposium: v. 1, p. 921–928.
- Frost, B.R., and Frost, C.D., 2008, A Geochemical Classification for Feldspathic Igneous Rocks: Journal of Petrology, v. 49, p. 1955–1969.

- Gilluly, J., and Masursky, H., 1965, Geology of the Cortez quadrangle, Nevada, with a section on gravity and aeromagnetic surveys by D. R. Mabey: U.S. Geological Survey Bulletin 1175,117 p.
- Groff, J.A., Heizler, M.T., McIntosh, W.C., and Norman, D.I., 1997, 40Ar/39Ar dating and mineral paragenesis for Carlin-type gold deposits along the Getchell trend, Nevada: Evidence for Cretaceous and Tertiary gold mineralization: Economic Geology, v. 92, p. 601–622.
- Hall, C.M., Kesler, S.E., Simon, G., and Fortuna, J., 2000, Overlapping Cretaceous and Eocene Alteration, Twin Creeks Carlin-Type Deposit, Nevada: Economic Geology, v. 95, p. 1739–1752.
- Henry, C.D., and Boden, D.R., 1998, Eocene magmatism: The heat source for Carlin-type gold deposits of northern Nevada: Geology, v. 26, p. 1067–1070.
- Henry, C.D., and Ressel, M.W., 2000, Eocene magmatism of northeastern Nevada: the smoking gun for Carlin-type gold deposits, *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds., Geology and Ore Deposits 2000: The Great Basin and Beyond Symposium: Geological Society of Nevada, proceedings, p. 365–388.
- Henry, C.D., Faulds, J.E., Boden, D.R., and Ressel, M.W., 2001, Timing and styles of Cenozoic extension near the Carlin trend, northeastern Nevada: Implications for the formation of Carlin-type gold deposits: Regional Tectonics and Structural Control of Ore: The Major Gold Trends of Northern Nevada: Geological Society of Nevada Special Publication, v. 33, p. 115–128.
- Henry, C.D., 2008, Ash-flow tuffs and paleovalleys in northeastern Nevada: Implications for Eocene paleogeography and extension in the Sevier hinterland, northern Great Basin: Geosphere, v. 4, p. 1–35.
- Henry, C.D., 2009, Unpublished ⁴⁰Ar/³⁹Ar age dates as part of studies related to timing and distribution of caldera magmatism in Nevada, prepared for Barrick Goldstrike Mines, Inc..
- Henry, C.D., and John, D.A., 2013, Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA: Geosphere, v. 9, p. 951–1008.
- Hofstra, A.H., Snee, L.W., Rye, R.O., Folger, H.W., Phinisey, J.D., Loranger, R.J., Dahl, A.R., Naeser, C.W., Stein, H.J., and Lewchuk, M., 1999, Age constraints on Jerritt Canyon and other Carlin-type

gold deposits in the western United States—relationship to Mid-Tertiary extension and magmatism: Economic Geology, v. 94, p. 769–802.

- Holm-Denoma, C., Hofstra, A., Noble, P., and Leslie, S., 2011, Paleozoic stratigraphy and kinematics of the Roberts Mountains allochthon in the Independence Mountains, northern Nevada: Geological Society of Nevada Proceedings, p. 1039–1954.
- Holm-Denoma, C.S., Hofstra, A.H., Rockwell, B.W., and Noble, P.J., 2017, The Valmy thrust sheet: A regional structure formed during the protracted assembly of the Roberts Mountains allochthon, Nevada, USA: GSA Bulletin, v. 129, p. 1521–1536.
- Hollingsworth, E.R., Ressel, M.W., Henry, C.D., 2017, Age and depth of Carlin-type gold deposits in the southern Carlin Trend: Eocene mountain lakes, big volcanoes, and widespread, shallow hydrothermal circulation in Shallow Expressions of Carlin-type Gold Deposits: Alligator Ridge and Emigrant Mines, Nevada: Geological Society of Nevada, Special Publication 64, p. 149-173.
- Hotz, P.E., and Willden, R., 1964, Geology and mineral deposits of the Osgood Mountains quadrangle, Humboldt County, Nevada: U.S. Geological Survey Professional Paper 431, 129 p.
- Humphreys, E.D., 1995, Post-Laramide removal of the Farallon slab, western United States: Geology, v. 23, p. 987–990.
- Jackson, M., Arbonies, D., and Creel, K., 2010, Architecture of the Cortez Hills breccia body: Geological Society of Nevada, Symposium, Reno, Nevada, 14-22 May 2010, Proceedings, p. 97-123.
- John, D.A., Henry, C.D., and Colgan, J.P., 2008, Magmatic and tectonic evolution of the Caetano caldera, north-central Nevada: A tilted, mid-Tertiary eruptive center and source of the Caetano Tuff: Geosphere, v. 4, p. 75–106.
- Johnson, J.G., 1959, Geology of the Northern Simpson Park Range, Eureka County, Nevada: Unpublished Ph.D. thesis, University of California, Los Angeles, 101 p.
- Kelley, S., 2002, K-Ar and Ar-Ar dating: Reviews in Mineralogy and Geochemistry, v. 47, p. 785-818.
- Ketner, K.B., and Alpha, A.G., 1992, Mesozoic and Tertiary rocks near Elko Nevada—Evidence for Jurassic to Eocene folding and low-angle faulting: U.S. Geological Survey Bulletin 1988-C. 13 p.

- Ketner, K.B., 2013, Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny: US Geological Survey, Professional Paper 1799, 18 p.
- King, C.A., 2017, Igneous Petrology, Geochronology, Alteration, and Mineralization Associated with Hydrothermal Systems in the Battle Mountain District, Nevada: Unpublished Ph.D. dissertation, Tucson, AZ, University of Arizona, 707 p.
- Kuehn, C.A., and Rose, A.R., 1992, Geology and geochemistry of wall-rock alteration at the Carlin gold deposit, Nevada: Economic Geology, v. 87, p. 1697–1721.

LeBas et al., 1986

LeMaitre et al., 1989

- Linde, G.M., Trexler, J.H., Jr, Cashman, P.H., Gehrels, G., and Dickinson, W.R., 2016, Detrital zircon U-Pb geochronology and Hf isotope geochemistry of the Roberts Mountains allochthon: New insights into the early Paleozoic tectonics of western North America: Geosphere, v. 12, p. 1016– 1031.
- Linde, G.M., Trexler, J.H., Jr, Cashman, P.H., Gehrels, G., and Dickinson, W.R., 2017, Three-Dimensional Evolution of the Early Paleozoic Western Laurentian Margin: New Insights from Detrital Zircon U-Pb Geochronology and Hf Isotope Geochemistry of the Harmony Formation of Nevada: Early Paleozoic Western Laurentia: Tectonics, v. 36, p. 2347–2369.
- Long, S.P., Henry, C.D., Muntean, J.L., Edmondo, G.P., and Thomas, R.D., 2014, Geologic map of the southern part of the Eureka mining district and surrounding areas of the Fish Creek Range, Mountain Boy Range, and Diamond Mountains, Eureka and White Pine counties, Nevada: Nevada Bureau of Mines and Geology Map 183, 2 plates, scale 1:24,000, 36 p.
- Longo, A.A., Cline, J.S., and Muntean J.L., 2009b, Using pyrite to track evolving fluid pathways and chemistry in Carlin-type deposits: Geological Society of Nevada, Special Publication 49, p. 63-65.
- Madrid, R. J., 1987, Stratigraphy of the Roberts Mountains allochthon in north central Nevada: Unpublished Ph.D. Dissertation, Stanford University, Stanford, 341 p.
- Mathewson, D., 2001, Tectono-stratigraphic setting for the Rain district gold deposits, Carlin trend, Nevada: Geological Society of Nevada Special Publication 33, p. 91–109.

- McKee, E.H., 1968, Geologic map of the Ackerman Canyon quadrangle, Lander and Eureka Counties, Nevada: Geologic Quadrangle USGS Numbered Series 761, scale 1:62,500.
- McKee, E.H., 1986, Geologic map of the Roberts Wilderness study area, Eureka County, Nevada: U.S. Geological Survey miscellaneous field studies map MF-1844, scale: 1:48,000.
- McKee, E.H., Barton, H.N., Ponce, D.A., Benjamin, D.A., and Johnson, F.L., 1986, Mineral resources of the Roberts Wilderness study area, Eureka County, Nevada, U.S. Geological Survey open-file report 1731-k.
- McKee, E.H., and Conrad, J.E., 1994, Geologic map of the northern part of the Simpson Park Mountains, Eureka County, Nevada: U.S. Geological Survey Miscellaneous Field Studies Map MF-2257, scale 1:24,000.
- Mehrtens, M.B., 1987, Case history and problem 1: The Tonkin Springs Gold Mining District, Nevada, U.S.A., in Fletcher, W.K., et al., eds., Exploration geochemistry: design and interpretation of soil surveys, Reviews in Economic Geology, vol. 3, p. 129-134.
- Merriam, C. W., 1940, Devonian stratigraphy and paleontology of the Roberts Mountains region, Nevada: Geol. Soc. America Spec. Paper 25, 114 p., 16 pls.
- Merriam, C. W., and McKee, E. H., 1976. The Roberts Mountains Formation, a regional stratigraphic study with emphasis on rugose coral distribution, with a section on conodonts by John W. Huddle: U.S. Geological Survey, Professional Paper 973, 51 p.
- Muntean, J.L., Cline, J.S., Simon, A.C., and Longo, A.A., 2011, Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits: Nature Geoscience, v. 4, p. 122.
- Muntean, J.L., Davis, D.A., Ayling, B., 2017, The Nevada Minerals Industry: Nevada Bureau of Mines and Geology, Special Publication MI-2016, 187 p. <u>http://pubs.nbmg.unr.edu/The-NV-mineral-industry-2016-p/mi2016.htm</u>
- Nakamura, N., 1974, Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites: Geochim. Cosmochim. Acta, v. 38, p. 757-775.

- Noble, A.C., Brown, S., Gowans, R., 2008, Technical Report on the Tonkin Project, Eureka County, Nevada, USA, prepared for US Gold Corporation (McEwen Mining), dated May 16, 2008, 208 p. <u>http://s21.q4cdn.com/390685383/files/doc_downloads/governance/reserves-and-</u> <u>resources/technical-report.pdf</u>
- Onstott, T.C., Miller, M.L., Ewing, R.C., Arnold, G.W., and Walsh, D.S., 1995, Recoil refinements: Implications for the 40Ar/39Ar dating technique: Geochimica et Cosmochimica Acta, v. 59, p. 1821–1834.
- Pearce, J.A., 1996, A User's Guide to Basalt Discrimination Diagrams, In: Wyman, D.A., Ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, Geological Association of Canada, Short Course Notes, Vol. 12, 79-113.

Pearce, J.A., 2014, Immobile Element Fingerprinting of Ophiolites: Elements, v. 10, p. 101-108.

- Pullen, A., Ibáñez-Mejia, M., Gehrels, G.E., Giesler, D., and Pecha, M., 2018, Optimization of a Laser Ablation-Single Collector-Inductively Coupled Plasma-Mass Spectrometer (Thermo Element 2) for Accurate, Precise, and Efficient Zircon U-Th-Pb Geochronology: Geochemistry, Geophysics, Geosystems, 17 p.
- Ressel, M.W., Noble, D.C., Henry, C.D., and Trudel, W.S., 2000a, Dike-hosted ores of the Beast deposit and the importance of Eocene magmatism in gold mineralization of the Carlin trend, Nevada: Economic Geology, v. 95, p. 1417–1444.
- Ressel, M.W., Noble, D.C., Volk, J.A., Lamb, J.B., Park, D.E., Conrad, J.E., Heizler, M.T., and Mortensen, J.K., 2000b, Precious-metal mineralization in Eocene dikes at Griffin and Meikle: Bearing on the age and origin of gold deposits of the Carlin trend, Nevada, *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.I., eds., Geology and Ore Deposits 2000: The Great Basin and Beyond, Geological Society of Nevada, Symposium Proceedings, p. 79–101.
- Ressel, M.W., and Henry, C.D., 2006, Igneous geology of the Carlin trend, Nevada: Development of the Eocene plutonic complex and significance for Carlin-type gold deposits: Economic Geology, v. 101, p. 347–383.

- Rhys, D., Valli, F., Burgess, R., Heitt, D., Greisel, G., Hart, K., Pennell, W.M., and Garside, L.J., 2015, Controls of fault and fold geometry on the distribution of gold mineralization on the Carlin trend, in Pennell, W. M. and Garside, L. J. eds., New Concepts and Discoveries Symposium: Geological Society of Nevada, proceedings, v. 1, p. 333–389.
- Roberts, R.J., 1951, Geologic map of the Antler Peak quadrangle, Nevada: Geologic Quadrangle Report 10.
- Roberts, R.J., Hotz, P.E., Gilluly, J., and Ferguson, H.G., 1958, Paleozoic rocks of north-central Nevada: American Association of Petroleum Geologists Bulletin, v. 42, no. 12, p. 2813–2857.
- Roberts, R.J., 1964, Stratigraphy and structure of the Antler Peak quadrangle, Humboldt and Lander counties, Nevada: U.S. Geological Survey Professional Paper 459-A, 93 p.
- Roberts, R.J., Montgomery, K.M., and Lehner, R.E., 1967, Geology and Mineral Resources of Eureka County, Nevada: Nevada Bureau of Mines and Geology Bulletin 64, 152 p., 12 pl.
- Silberman, M. L., & McKee, E. H., 1971, K-Ar ages of granitic plutons in north-central Nevada: Isochron/West, v. 1, p. 15-32.
- Sillitoe, R.H., 2010, Porphyry copper systems: Economic geology, v. 105, p. 3-41.
- Smith, M.E., Cassel, E.J., Jicha, B.R., Singer, B.S., and Canada, A.S., 2017, Hinterland drainage closure and lake formation in response to middle Eocene Farallon slab removal, Nevada, U.S.A.: Earth and Planetary Science Letters, v. 479, p. 156–169.
- Steiger, R.H., and Jäger, E., 1977, Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology: Earth and Planetary Science Letters, v. 36, p. 359-362.
- Stewart, J.H., and Carlson, J.E., 1976, Geologic map of north-central Nevada: Nevada Bureau of Mines and Geology Map 50, scale 1:250,000.
- Teal, L., Jackson, M., 1997, Geologic overview of the Carlin trend gold deposits and description of recent deep discoveries: SEG Newsletter, v. 31, p. 1, 13–25.
- Trexler, J.H., Jr, Cashman, P.H., Snyder, W.S., and Davydov, V.I., 2004, Late Paleozoic tectonism in Nevada: Timing, kinematics, and tectonic significance: Geological Society of America Bulletin, v. 116, p. 525–538.

- Tretbar, D.R., Arehart, G.B., and Christensen, J.N., 2000, Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite: Geology, v. 28, p. 947–950.
- Winchester, J.A., and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements: Chemical Geology, v. 20, p. 325-343.
- Xiang, W., Griffin, W.L., Jie, C., Pinyun, H., Xiang, L., 2011, U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: improved zircon-melt distribution coefficients: Acta Geol. Sin., v. 85 (1), p. 164–174.
- Yigit, O., Hofstra, A.H., Hitzman, M.W., and Nelson, E.P., 2006, Geology and geochemistry of jasperoids from the Gold Bar district, Nevada: Mineralium Deposita, v. 41, p. 527–547.
- Zhang, J.-Y., Ma, C.-Q., Zhang, C., and Li, J.-W., 2014, Fractional crystallization and magma mixing: evidence from porphyritic diorite-granodiorite dykes and mafic microgranular enclaves within the Zhoukoudian pluton, Beijing: Mineralogy and Petrology, v. 108, p. 777–800.
- Zhang, S.-H., and Zhao, Y., 2017, Cogenetic origin of mafic microgranular enclaves in calc-alkaline granitoids: The Permian plutons in the northern North China Block: Geosphere, v. 13, p. 482–517.

Appendix A – Geochemistry

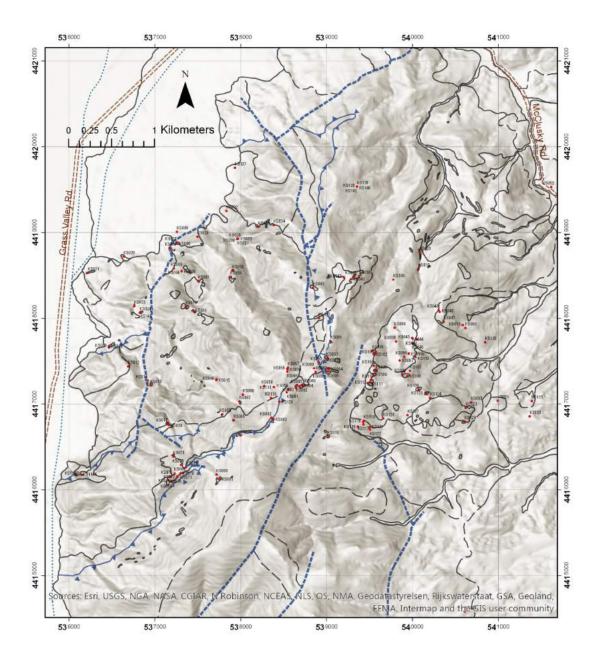


Figure A1. Location map of samples collected by Gabriel Aliaga. Geologic contacts and fault lines are same as Plate 1.

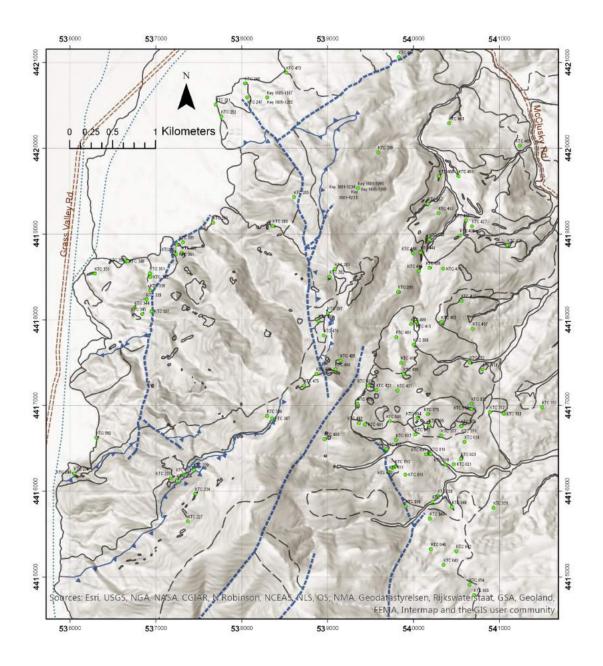


Figure A2. Location map of samples collected by Tom Chapin for U.S. Gold Corp. Geologic contacts and fault lines are same as Plate 1.

Table A1. Multi-elemen	t geochemistr	y of unaltered	and altered r	ocks.
6 1 10	1/00.01	1/00.00	1/00.0.2	1//

Sampl	e ID East	KS001 540616	KS002 537834	KS003 540682	KS004 537219	KS005 537220	KS006 537313	KS007 537503	KS008 537257	KS009 537184	KS010 537357	KS011 537445	KS012 536688	KS013 536947
UTM NAD27	Nort	441788	4419254	4417021	4418582	441858	441854	4418434	4419009	441881	441813	4418093	4417440	441721
Uni	h it	7 Tvc	Twq	Tmd	Dw	2 Twq	9 Dw	Twq	Ov	8 Tta	7 Twq	Twd	Dhc	5 Twd
Comment/A	Alteration	clay	unaltere	unaltere	jasperoi	sodic-	skam	unaltere	limonite	chlorite,	endo-	unaltere	limonite	Mingla
Who le-		-	d Y	d KTC372	d	calcic Y		d Y	, bx	bx Y	skam Y	d Y	, bx	Y
Ore cher	nistry								Y				Y	
Thin Se			Y	Y		Y	Y	Y		Y	Y	Y		2
SiO ₂ Al ₂ O ₃	%		69.78 15.58			67.82 15.20		69.52 14.46		65.30 17.39	59.74 17.89	63.58 16.46		66.65 15.81
FeO*	%		1.75			1.29		3.05		4.62	5.47	5.57		3.77
CaO	%		2.47			5.81		2.50		3.22	4.81	3.68		3.49
MgO Na2O	%		1.16 3.29			1.64 3.20		1.21 3.21		1.71 2.78	2.41 4.13	2.13 3.21		1.55 3.21
K ₂ O	%		5.02			4.07		5.18		3.61	3.84	4.03		4.36
Cr ₂ O ₃	%		0.01			0.01		0.01		0.01	0.01	0.01		0.01
TiO2 MnO	% %		0.53 0.01			0.56 0.03		0.51 0.03		0.66 0.12	0.90 0.06	0.77 0.11		0.62 0.08
P ₂ O ₅	%		0.18			0.18		0.13		0.23	0.48	0.25		0.24
SrO	%		0.06			0.08		0.06		0.06	0.10	0.06		0.06
BaO LOI	%		0.16 1.15			0.12 1.25		0.13 0.6		0.29 5.9	0.15 1.92	0.13 1.68		0.14 2.04
Ag	ppm		<0.5			<0.5		<0.5	0.08	<0.5	<0.5	<0.5	0.02	<0.5
Al	%								0.92				0.26	
As Au	ppm		4.5			2.5		2.5	383 0.01	14.9	2.7	2.5	61.1 <0.005	5.4
B	ppm ppm								10				<10	
Ba	ppm		1420			1050		1195	110	2390	1380	1185	740	1305
Be	ppm		2.00			0.07		0.04	1.18	0.07	0.00	0.24	2.52	0.17
Bi C	ppm %		3.88 0.05			0.27 0.18		0.04 0.04	0.65	0.06 0.49	0.08 0.05	0.34 0.03	0.08	0.17 0.02
Ca	%								0.4				11.05	
Cd	ppm		<0.5			<0.5		<0.5	0.61	<0.5	<0.5	<0.5	0.47	<0.5
Ce Co	ppm		109 4			85.6 3		104.5 6	2.45 7.7	61.2 7	104.5 6	85.9 13	12.1 3.9	100.5 8
Cr	ppm ppm		20			30		20	10	10	10	10	6	30
Cs	ppm		3.96			1.94		3.73	2.47	2.68	2.54	9.25	2.18	3.31
Cu Du	ppm		12 3.13			9		7 3.25	66.4	8 2.81	9 3.29	13 3.9	7.7	7 3.46
Dy Er	ppm ppm		1.68			3.3 1.85		1.87		1.44	1.24	2.14		1.77
Eu	ppm		1.23			1.3		1.06		1.27	1.64	1.42		1.33
Fe	%		21.0			20.0		20.1	5.86	22.6	24.2	22	1.4	22.4
Ga Gd	ppm ppm		21.8 4.56			20.8 4.77		20.1 4.44	2.28	22.6 4.16	24.2 5.67	22 4.92	1.92	23.4 4.87
Ge	ppm		<5			<5		<5	0.16	<5	<5	<5	< 0.05	<5
Hf	ppm		6.8			6		5.5	0.05	5.2	6	5	0.03	6.1
Hg Ho	ppm ppm		0.014 0.57			0.014 0.6		0.007 0.61	0.54	0.326 0.55	0.012 0.52	0.006 0.82	0.78	0.007 0.69
In	ppm		0.009			0.007		0.007	0.012	0.021	0.006	0.027	0.009	0.013
к	%								0.05				0.06	
La Li	ppm		60.3 20			48.3 20		60 20	1.1 9.5	31.3 30	55.3 10	46 40	5.7 1.8	54.8 20
Lu	ppm ppm		0.24			0.26		0.27	9.5	0.24	0.16	0.34	1.8	0.26
Mg	%								0.05				0.12	
Mn Mo	ppm		1			1		1	36	~1	~1	1	122	1
Mo Na	ppm %		1			1		1	2.01 0.01	<1	<1	1	2.85 0.01	1
Nb	ppm		18.4			17.2		19		13.5	14.5	13.3		18.3
Nd	ppm		40.9			34.2		38		28.1	46.2	36.5		39.3
Ni P	ppm ppm		4			9		6	75.1 2100	3	3	4	16.1 90	6
Pb	ppm		12			10		17	2.7	6	11	30	8.2	12
Pr	ppm		11.6			9.35		11.05		7.32	12.05	9.99	a -	11.1
Rb Re	ppm		154.5 <0.001			95.4 <0.001		182 <0.001	3 0.001	98.5 <0.001	118.5 <0.001	124 <0.001	3.7 <0.001	149.5 <0.001
S	ppm %		<0.01			<0.001		<0.001	0.001	<0.001	<0.001	<0.001	0.001	0.001
Sb	ppm		0.56			0.63		0.43	233	0.45	0.44	0.38	43.4	0.29
Sc	ppm		5 0.4			6 0.2		4 <0.2	1.4 0.5	6 0.2	5 <0.2	11 <0.2	3.1 0.7	7 0.3
Se Sm	ppm ppm		0.4 6.8			6.11		<0.2	0.5	0.2 5.22	<0.2 7.89	<0.2 6.76	0.7	0.3 7.01
Sn	ppm		6			6		2	0.3	2	3	3	0.5	3
Sr To	ppm		510			663		510	99.3	464	837	554	50	513
Ta Tb	ppm ppm		1.4 0.64			1.4 0.66		1.7 0.63		0.8 0.55	0.8 0.71	0.9 0.7		1.5 0.7
Te	ppm		2.14			0.03		<0.01	0.25	0.02	<0.01	0.01	0.03	0.03
Th	ppm		27.9			26.5		29.4	1.2	10.55	12.8	15.3	1.2	24
Ti Tl	%		0.09			0.03		0.19	<0.005 0.44	0.13	0.06	0.1	<0.005 0.19	0.03
Tm	ppm ppm		0.09			0.03		0.19	0.44	0.13	0.08	0.1	0.19	0.03
U	ppm		4.18			5.21		4.93	5.89	2.27	2.67	3.06	0.6	3.29
V W	ppm		58			67 1		54 2	75	70 1	120 2	132 4	10	74
W Y	ppm ppm		1 16.8			1 17.7		2 17.8	49.7 7.75	1 15.9	2 15.2	4 20.7	31.9 5.14	1 18.2
Yb	ppm		1.68			1.78		1.81		1.67	1.22	2.16		1.62
Zn Zr	ppm		20			14		25	98	89	37	91	25	47
	ppm		258			228		190	1.5	211	254	192	1	231

Table A1. Mu	lti-element	geochemistry	of unaltered	and altered r	ocks.									
Sample	ID	KS016	KS017	KS018	KS019	KS020	KS021	KS022	KS023	KS024	KS025	KS026	KS027	KS028
UTM	East	537717	537148	537159	540069	540082	536219	536466	536466	536823	536760	536635	537254	537494
NAD27	North	44 17287	44 16766	4416752	44 18575	44 18768	44 18531	4417674	4417671	44 18066	44 18145	44 18721	44 18882	44 18951
Unit		Twq	Twd	Dw	Tad	Tad	Tta	Ovb	Tgd	Ovb	Tta	Tvc	Twq	Twq
Comment/Al	teration	sodic- calcic	mingled	limonite, sanded	clay	clay	chlorite	green stone		green stone	chlorite	oxidized	clay	endo- skam
Whole-ro	ock1	Y	Y	sanueu	KTC 440	Y	KTC 353	Y	Y	KTC 345	KTC 344	Y	Y	Y
Ore chemi		-	-	Y		-		-	-			-	-	-
Thin Sect		Y		-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
SiO ₂	%	64.23	71.40			71.42		48.90	60.80			83.09	80.48	56.74
Al ₂ O ₃	%	16.08	18.79			18.76		16.44	17.16			9.31	17.06	16.59
FeO*	%	4.50	2.51			2.53		9.99	5.67			3.20	0.58	5.13
CaO	%	4.61	0.18			0.18		8.14	4.42			0.34	0.50	6.64
MgO	%	2.01	0.96			0.96		6.47	3.10			0.49	0.17	3.00
Na ₂ O	%	3.32	0.08			0.07		4.48	3.18			0.11	0.09	2.09
K20	% %	3.93 0.01	4.91 0.01			4.91 0.01		1.26 0.02	4.11 0.01			2.82 0.01	0.11 0.01	7.96 0.01
Cr ₂ O ₃ TiO ₂	%	0.77	0.82			0.82		2.96	0.79			0.01	0.01	1.12
MnO	%	0.07	0.01			0.01		0.14	0.10			0.03	0.04	0.10
P2O5	%	0.24	0.17			0.18		0.81	0.32			0.16	0.22	0.29
SrO	%	0.07	0.01			0.01		0.14	0.08			0.09	0.01	0.13
BaO	%	0.16	0.16			0.16		0.26	0.26			0.11	0.02	0.19
LOI		0.91	4.94			5.02		3	2.82			3.7	6.98	1.25
Ag	ppm	<0.5	<0.5	0.02		<0.5		<0.5	<0.5			0.8	2.6	<0.5
Al	%			0.61										
As	ppm	2.7	39.1	8.3		38.3		8.1	2.2			70.2	14.1	3.9
Au	ppm			< 0.005										
B Ba	ppm ppm	1515	1420	40 340		1370		2260	2180			986	214	1675
Be		1515	1420	0.14		1370		2200	2180			980	214	1075
Bi	ppm ppm	0.06	0.03	0.07		0.03		0.01	0.01			0.19	0.12	0.02
C	%	0.02	0.05			0.06		0.01	0.12			0.12	0.05	0.02
Ca	%			>25.0										
Cd	ppm	0.5	<0.5	0.1		<0.5		0.7	<0.5			<0.5	<0.5	<0.5
Ce	ppm	96.6	94.4	25		91.7		113.5	83.3			79.7	158.5	85.8
Со	ppm	13	2	4.6				34	13			1	1	15
Cr	ppm	20	20	5		20		130	30			40	30	40
Cs	ppm	3.56	13.4	0.87		12.85		2.04	5.53			4.06	2.58	2.57
Cu Dy	ppm	16 3.97	22	8.8		22 3.28		35 5.82	15 3.65			25 3.24	13 4.16	11 3.42
Er	ppm	2.1	3.57 1.74			1.8		2.55	1.97			3.24 1.9	2.05	1.69
Eu	ppm ppm	1.39	1.28			1.16		3.03	1.38			0.85	1.72	1.6
Fe	%	1.57	1.20	1.09		1.10		5.05	1.50			0.05	1.72	1.0
Ga	ppm	22	23.5	1.22		23.2		23.5	21.5			14.7	24	24.1
Gd	ppm	5.41	4.31			4.16		8.52	4.79			3.88	6.84	5.02
Ge	ppm	<5	<5	<0.05		<5		<5	<5			<5	<5	<5
Hf	ppm	6.1	6.8	0.14		6.6		7.4	4.9			3.7	7.1	5.6
Hg	ppm	0.009	0.019	0.03		0.022		0.02	0.099			0.949	0.054	0.012
Ho	ppm	0.72	0.65			0.59		1.04	0.66			0.66	0.77	0.63
In	ppm	0.011	0.02	0.014		0.02		0.043	0.026			0.023	0.03	0.008
K La	%	53.2	51.9	0.18 14.3		49.7		57.1	45.5			50.6	96.7	47.2
Li	ppm ppm	30	10	3.3		10		40	30			20	50	20
Lu	ppm	0.3	0.24	5.5		0.26		0.32	0.28			0.29	0.24	0.26
Mg	%			0.28										
Mn	ppm			140										
Mo	ppm	1	2	0.63		2		2	2			2	1	1
Na	%			0.03										
Nb	ppm	17.4	13.6	0.6		13.3		54	10.5			11.7	17.3	14
Nd	ppm	38.9	37.1	17.5		36 5		53.4	35.6 3			29.9	57.6	37.6
Ni P	ppm	8	7	17.5 270		5		67	3			4	4	12
Pb	ppm ppm	20	28	5.7		28		4	13			40	70	21
Pr	ppm	10.95	10.5	2.7		10.35		13.5	9.49			8.74	16.65	9.84
Rb	ppm	135	179	14.5		174		23.1	95.4			102	4.8	145
Re	ppm	0.001	0.001	< 0.001		0.001		< 0.001	< 0.001			0.001	< 0.001	< 0.001
s	%	0.01	0.07	<0.01		0.07		0.01	0.42			0.02	0.02	0.02
Sb	ppm	0.39	1.86	0.38		1.83		0.62	0.69			18.9	7.02	0.57
Sc	ppm	10	10	0.9		10		17	13			5	6	11
Se	ppm	<0.2	0.2	0.2		0.2		0.8	0.4			0.9	0.4	<0.2
Sm	ppm	6.96 2	5.65 1	0.3		5.81 2		10.55 4	6.38 1			5.08 2	9.14 3	6.55 1
Sn Sw	ppm		100.5	492		2 96.1		4	699			749	37.4	1080
Sr Ta	ppm ppm	595 1.3	1.4	0.01		0.8		3.4	0.6			0.7	1.2	0.7
Тв	ppm	0.74	0.63			0.59		1.12	0.68			0.6	0.82	0.65
Te	ppm	0.02	< 0.01	0.02		< 0.01		0.04	0.01			0.07	0.03	0.01
Th	ppm	19.9	14	2.6		13.3		6.96	13.35			9.4	25.5	12.8
Ti	%			0.017										
TI	ppm	0.17	0.38	0.18		0.36		0.08	1.81			0.12	0.17	0.14
Tm	ppm	0.32	0.24			0.24		0.37	0.27			0.27	0.27	0.28
U	ppm	3.69	3.19	0.46		3.06		1.9	3.03			3.17	3.68	2.53
V	ppm	109	109	6		103		219	143			101	71	128
W Y	ppm	1 21	4 16.2	0.53 6.65		3 15.5		1 26.5	1 18.7			47 21.5	53 25.2	1 18.3
Y Yb	ppm ppm	2.07	1.69	0.05		15.5		26.5	2.04			1.93	1.58	1.65
Zn	ppm	43	33	30		33		112	91			57	64	73
Zr	ppm	227	273	5.4		264		321	204			136	280	228

 Lr
 ppm
 221
 2/3
 5.4
 264
 521
 204

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are same as map units in geologic map (Plat 1).
 Samples
 Samples
 KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.
 'Whole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Table A1. Mu	ulti-element	geochemistry	of unaltered	and altered r	ocks.									
Sample	ID	KS029	KS030	KS031	KS032	KS033	KS034	KS035	KS036	KS037	KS038	KS039	KS040	KS041
UTM	East	537965	537958	537961	537965	537970	538384	538205	539379	539316	537970	537253	537253	539286
NAD27	North	44 18926	44 18925	44 18926	44 18927	44 18929	44 19088	44 19065	44 18489	44 18485	44 18929	44 18886	44 18886	44 18457
Unit		Twq	Twq	Twq	Twq	Twq	Twd endo-	Dw skam	Dw	Twd endo-	Twq	Dw	gossan	Twd
Comment/Al	teration	clay	qz veins				skam	ore	marble	skam	qz veins	jasp bx	gossan	
Whole-ro	ock ¹	Y		Y		Y	Y			Y	Y			Y
Ore chemi			Y					Y			Y	Y	Y	
Thin Sect	tion %	Y 76.69		69.40		(0.22	Y	Y	Y	Y 57.26	87.26			Y
SiO ₂ Al ₂ O ₃	%	16.18		15.46		69.22 15.49	57.04 14.71			16.98	87.36 8.24			61.75 17.20
FeO*	%	0.94		2.89		2.04	4.46			5.84	0.84			5.74
CaO	%	0.33		2.83		3.57	10.28			6.29	0.35			4.90
MgO	%	0.37		1.02		1.24	3.04			2.15	0.22			2.23
Na ₂ O	%	0.13		2.97		3.25	3.59			4.79	0.08			3.37
K2O Cr2O3	% %	4.52 0.01		4.52 0.01		4.20 0.01	4.91 0.01			5.00 0.01	2.45 0.01			3.18 0.01
TiO ₂	%	0.53		0.52		0.52	1.07			0.90	0.01			0.01
MnO	%	0.02		0.02		0.03	0.10			0.12	0.05			0.11
P_2O_5	%	0.19		0.15		0.20	0.46			0.32	0.09			0.36
SrO	%	0.01		0.06		0.07	0.13			0.15	0.01			0.08
BaO	%	0.09		0.15		0.15	0.19			0.18	0.04			0.15
LOI Ag	ppm	2.65 0.5		1.24 <0.5		1.05 <0.5	0.95 <0.5	156		1.11 <0.5	1.64 6	1.4	111	1.24 <0.5
Al	%	0.5		-010		-0.5	-0.5	0.15		-0.2	Ũ	0.15	0.77	-015
As	ppm	1.6		9		7	10.9	268		2.4	16.3	582	848	2
Au	ppm							0.021			<0.005	0.087	0.134	
B	ppm	774		1205		1210	1675	<10		1500	242	<10	10	1260
Ba Be	ppm ppm	774		1295		1310	1675	10 0.08		1590	342	400 0.29	220 5.09	1360
Bi	ppm	0.64		0.31		0.38	0.04	10.8		0.03	2.14	0.36	56.2	0.03
c	%	0.04		0.02		0.04	0.12			0.04	0.02			0.04
Ca	%							3.82				1.37	0.43	
Cd	ppm	<0.5		<0.5		<0.5	0.6	371		<0.5	<0.5	1.68	29	<0.5
Ce	ppm	46.1		91.1 5		104.5	112	8.36		81.6 11	53 2	56.4	44.5	96.7
Co Cr	ppm ppm	1 20		30		5 30	15 50	25.5 8		10	30	2.4 20	33.1 7	10 10
Cs	ppm	1.91		3.98		1.98	2.85	0.14		5.99	5.14	0.42	10.2	5.85
Cu	ppm	25		6		5	36	2460000		6	97	72.3	1665000	6
Dy	ppm	2.28		2.84		3	3.83			3.96	1.37			4.56
Er	ppm	1.22		1.36		1.5	1.84			2.23	0.62			2.52
Eu Fe	ppm %	0.72		1.11		1.23	1.73	12.1		1.68	0.57	0.55	9.5	1.65
Ga	ppm	18.5		21.4		21.7	21.5	0.7		24	9.8	0.97	9.27	25.2
Gd	ppm	3.14		4.02		4.17	5.94			5.3	2.09			6.16
Ge	ppm	<5		<5		<5	<5	0.21		<5	<5	0.1	0.37	<5
Hf	ppm	5.7		6.2		5.7	5.8	0.07		5.4	3.2	0.05	0.1	6.6
Hg Ho	ppm	0.017 0.42		0.015 0.5		0.022 0.58	0.008 0.69	0.6		0.01 0.8	0.051 0.28	0.65	1.72	0.009 0.88
In	ppm ppm	0.016		0.021		0.021	0.009	1.015		0.009	0.28	0.028	1.805	0.021
ĸ	%	0.010		0.021		0.021	0.009	0.01		0.009	0.000	0.01	0.04	0.021
La	ppm	25.6		51		57.8	59.4	4.1		44.7	29.7	52.1	21.9	50.9
Li	ppm	10		20		20	10	1		30	30	1.2	1.6	10
Lu	ppm	0.21		0.2		0.25	0.26	0.16		0.31	0.13	0.02	0.20	0.32
Mg Mn	% ppm							0.16 1200				0.03 194	0.29 326	
Mo	ppm	<1		1		1	3	19.05		4	3	1.62	66.9	1
Na	%							0.01				0.01	0.01	
Nb	ppm	16.5		16.7		16.8	21.8	0.09		12	8.2	0.1	0.18	16.1
Nd	ppm	20		34.1		37	48.9	14.4		35.8	20.6	14.0	0.0	42.7
Ni P	ppm ppm	4		6		6	13	14.4 150		2	3	14.8 380	9.9 210	1
Pb	ppm	35		15		16	12	29 50000		21	1840	156	42 00000	16
Pr	ppm	5.48		9.77		11	12.8			9.44	6.19			11.4
Rb	ppm	130		122.5		102	122.5	0.3		156	195	0.9	9	99.4
Re S	ppm %	0.001 <0.01		<0.001		<0.001	<0.001 <0.01	0.002		0.001	<0.001 0.03	0.004 0.11	0.002 0.03	<0.001
Sb	% ppm	0.31		<0.01 0.39		<0.01 0.45	<0.01 0.98	>10.0 23.1		0.02 0.32	2.27	42.1	360	<0.01 0.17
Sc	ppm	6		5		5	12	1.5		11	2	1.6	1.7	10
Se	ppm	<0.2		0.2		<0.2	<0.2	68.9		0.3	1.6	0.8	22.9	<0.2
Sm	ppm	4.29		5.59		5.92	8.2			6.94	3.37			7.8
Sn	ppm	4		2		2	2	1.6		2	3	0.4	2	2
Sr Ta	ppm ppm	23.6 1.3		465 1.3		561 1.3	1075 1.3	44.5		1250 0.7	17.7 0.7	42.1	94	719 1
Tb	ppm	0.44		0.52		0.6	0.77			0.73	0.26			0.86
Te	ppm	0.02		0.03		0.06	0.02	3.26		0.01	0.61	0.08	7.24	<0.01
Th	ppm	22.8		22.7		23.8	15.8	1.8		13.6	12.05	4.1	10.6	16.85
Ti Tl	%	0.23		0.17		0.05	0.05	<0.005 0.04		0.36	0.33	<0.005 0.71	< 0.005	0.34
Tm	ppm ppm	0.23		0.17		0.05	0.05 0.25	0.04		0.36	0.33	0./1	0.36	0.34 0.37
U	ppm	2.65		3.73		3.57	3.87	2.69		2.94	1.85	2.18	96.8	3.18
v	ppm	60		56		50	138	11		122	52	15	97	113
W	ppm	4		1		1	2	1.59		1	6	7.28	219	1
Y	ppm	12.4		14.1		16.4	18.6	2.72		21.3	7.3	21.3	5.32	24.6
Yb Zn	ppm ppm	1.21 16		1.32 22		1.55 22	1.68 72	45 50000		2.35 105	0.76 147	208	3410000	2.4 99
Zr	ppm	205		235		214	222	2.8		218	125	1.4	1.9	261
	· · · ·			14. 1000/l										

 Lr
 ppm
 205
 255
 214
 222
 2.8

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are same as map units in geologic map (Plate 1).
 Samples "KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.

 'Whole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Table A1. Multi-element	geochemistry	of unaltered	and altered r	ocks.
6 1 10	1/00.40	1/00.43	1/00 4 4	17

		geochemistry												
Sample	ID East	KS042 539202	KS043 538842	KS044 539997	KS045 539997	KS046 539997	KS047 540365	KS048 540304	KS049 540317	KS050 540585	KS051 540994	KS052 541618	KS053 537902	KS054 537878
UTM NAD27	East North	44 18479	44 18355	44 17710	44 17771	44 17710	4417960	44 18097	44 18074	44 17921	44 17038	44 19530	44 18556	44 18483
Unit		Twq	Twd	Trp	Тгр	Тгр	Tvc	Tcg	Tcg	Tvc	Tda	Ta	Twd	Twd
Comment/Al	teration	mingled	mingled	clay	qz veins	qz veins	clay	limonite	silicified	clay			sodic-	
		Y	Y		qz venis	qz venis		mionite	smerner		v	v	calcic	
Whole-ro		Ŷ	Ŷ	KTC 398	Y	v	Y		v	Y	Y	Y	Y	
Ore chemi Thin Sect		Y	Y		r	Y Y	Y		Y	Y	Y	Y	2	Y
SiO ₂	%	68.57	62.68				82.86			81.35	67.54	64.44	62.28	
Al ₂ O ₃	%	16.20	16.76				11.75			12.62	16.68	16.44	16.91	
FeO*	%	1.90	5.14				2.04			1.01	3.04	4.65	2.31	
CaO	%	3.79	4.44				0.24			0.10	3.34	4.70	8.37	
MgO	%	1.18	1.91				0.38			0.54	0.82	1.98	2.82	
Na 2O K2O	% %	3.31 4.04	3.55 3.90				0.07 2.38			0.05 4.07	3.46 4.23	3.49 3.03	3.84 1.95	
Cr_2O_3	%	0.01	0.01				0.01			0.01	0.01	0.01	0.01	
TiO ₂	%	0.52	1.03				0.12			0.12	0.41	0.70	1.01	
MnÖ	%	0.05	0.03				0.01			0.03	0.07	0.08	0.03	
P_2O_5	%	0.20	0.31				0.07			0.02	0.15	0.26	0.30	
SrO	%	0.07	0.08				0.01			0.01	0.06	0.07	0.10	
BaO	%	0.15	0.16				0.05			0.07	0.19	0.14	0.07	
LOI Ag	nnm	2.95 <0.5	1.31 <0.5		2.14	0.21	3.62 <0.5		2.06	2.92 <0.5	2.07 <0.5	2.86 <0.5	3.47 <0.5	
Al	ppm %	-0.5	-0.5		0.11	0.21	-0.5		2.00	-0.5	-0.5	~0.5	-0.5	
As	ppm	6.7	5.9		23.8	7.7	53.5		266	15.5	0.9	0.4	2.7	
Au	ppm				0.005	<0.005			0.006					
В	ppm				<10	<10			10					
Ba	ppm	1385	1420		1090	140	401		640	561	1560	1135	591	
Be	ppm	0.01	0.1-		0.07	0.17	0.00		1.6	0.01	0.02	0.01	0.01	
Bi	ppm	0.06	0.17		0.49	0.42	0.09		1.15	0.26	0.02	0.01	0.01	
C Ca	% %	0.26	0.02		0.07	0.14	0.08		2.01	0.03	0.11	0.27	0.03	
Cd	ppm	<0.5	<0.5		2.89	0.14	<0.5		2.62	<0.5	<0.5	<0.5	<0.5	
Ce	ppm	73	96.1		13.75	29.3	75.3		28.3	27.5	108.5	79.2	95.8	
Co	ppm	2	7		0.4	0.2	2		27		4	9	5	
Cr	ppm	20	10		7	6	10		34	10	20	10	10	
Cs	ppm	1.74	2.7		0.26	0.41	4.71		1.17	2.13	1.68	1.64	8.14	
Cu Dy	ppm	2 3.99	5 3.98		211	10.8	5 2.52		337	9 1.66	5 4.12	8 3.05	1 4.59	
Er	ppm ppm	2.12	2.17				1.43			1.29	2.2	1.76	2.54	
Eu	ppm	1.17	1.52				0.96			0.23	1.66	1.36	1.56	
Fe	%				0.43	0.28			4.61					
Ga	ppm	22.7	23.2		0.52	1.15	14.8		6.09	19.3	21.4	19.7	21.7	
Gd	ppm	5.22	5.62				3.25			1.29	5.22	4.16	5.46	
Ge	ppm	<5	<5		< 0.05	< 0.05	<5		0.06	<5	<5	<5	<5	
Hf Hg	ppm	6.1 0.019	6.7 0.011		0.06 0.22	0.16 0.04	3.6 0.024		0.21 0.1	3.8 0.022	8.3 0.006	5.5 0.04	5.4 0.005	
Но	ppm ppm	0.019	0.75		0.22	0.04	0.024		0.1	0.022	0.000	0.6	0.84	
In	ppm	0.032	0.017		0.017	0.006	0.008		0.162	0.021	0.028	0.033	0.005	
K	%				0.11	0.13			0.15					
La	ppm	34.1	52.7		6.3	16	38.9		14.1	16.9	58	42.4	51.2	
Li	ppm	20	20		0.4	0.7	20		10.1	10	10	10	20	
Lu Ma	ppm	0.31	0.28		0.01	0.05	0.25		0.07	0.25	0.3	0.27	0.34	
Mg Mn	%				38	20			6420					
Mo	ppm ppm	1	2		3.21	2.06	2		6.74	1	2	2	1	
Na	%		-		0.01	0.01	-		0.01	-	-	-	•	
Nb	ppm	15.3	18.6		0.14	0.12	13		0.16	14.5	13.7	10.6	17.8	
Nd	ppm	36.1	40.7				28.4			9.3	41.3	29.8	38.2	
Ni	ppm	1	6		1.1	0.7	5		23.3	1	2	1	6	
P Ph	ppm	12	3		120	120	9		1350	19	21	22	5	
Pb Pr	ppm ppm	9.32	3 11.1		416	55.4	8.56		883	2.87	12.25	8.87	5 10.95	
Rb	ppm	114.5	107.5		4.2	5.2	82.9		7.2	142	12.2.5	80.6	56	
Re	ppm	0.001	< 0.001		< 0.001	< 0.001	<0.001		0.001	< 0.001	<0.001	< 0.001	< 0.001	
s	%	0.01	<0.01		0.1	< 0.01	0.01		0.16	0.11	< 0.01	<0.01	<0.01	
Sb	ppm	0.23	1.77		1.75	0.66	1.06		9.5	0.71	0.07	0.05	1.08	
Sc	ppm	5	9		0.2	0.5	3		3.4	3	4	8	11	
Se Sm	ppm	0.3 6.69	<0.2 7.18		0.9	<0.2	0.8 5.3		0.6	0.5 1.68	0.2 7.38	<0.2 5.43	0.3 7.57	
Sn	ppm ppm	3	1		0.3	0.2	1		1	5	2	1	1	
Sr	ppm	664	628		23.8	15.8	50.4		54	34.2	543	593	847	
Ta	ppm	1.2	1.1				0.8			1	0.9	0.6	1.1	
Tb	ppm	0.72	0.76				0.45			0.24	0.74	0.57	0.81	
Te	ppm	< 0.01	0.01		0.27	0.03	0.03		0.52	0.03	< 0.01	< 0.01	< 0.01	
Th Ti	ppm	21.5	18.65		2.9	10.1	11.8		3.2	11.5	18.2	11.25	14.55	
Ti Tl	%	0.05	0.12		<0.005 0.12	<0.005 0.1	0.39		<0.005 0.21	0.54	0.04	<0.02	0.02	
Tm	ppm ppm	0.03	0.12		0.12	0.1	0.39		0.21	0.34	0.04	0.02	0.35	
U	ppm	4.16	3.56		0.98	1.83	3.27		2.73	3.03	3.31	2.32	4.11	
V	ppm	55	95		2	3	6		95		32	99	137	
W	ppm	1	3		1.3	0.45	1		5.2	1	1	1	1	
Y	ppm	20.7	20.3		1.71	5.26	14.7		20.3	12	22.6	17.8	24.7	
	ppm	2.05	1.89				1.53			1.53	2.05	1.76	2.21	
Yb Zn	ppm	89	19		471	42	58		1060	15	71	85	10	

 Zn
 ppm
 89
 19
 4/1
 42
 58
 1060

 Zr
 ppm
 223
 270
 1.8
 3.9
 117
 6.4

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are same as map units in geologic map (Plat 1).
 Samples "KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.
 Whole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Table A1. Multi-element	t geochemistry	of unaltered	and altered	rocks.
Samula ID	VCOFF	VSOFC	VS057	V

Table A1. M	l ulti-element	geochemistry	of unaltered	and altered i	rocks.									
Sample		KS055	KS056	KS057	KS058	KS059	KS060	KS061	KS062	KS063	KS064	KS065	KS066	KS067
UTM	East	538552	538275	538549	538542	538545	538540	538537	538357	538377	537997	537918	538025	537984
NAD27	North	44 17171	44 17212	4417424	44 17410	4417405	44 17379	4417136	44 16839	44 16821	44 16632	44 16810	44 17111	4417030
Uni	t	Ov	Twq	Twq	Twq	Twq	Twq	Ov	Ovb	Ovb	Ovb	Twd	Twq	Twd
Comment/A	lteration	homfels	mingled	gamet	near gamet	gamet	near gamet	gossan	float	green	green	endo-	oxidized	mingled
Comment/A	uttration	nonneis	mingica	veins	veins	veins	veins	gossan	noat	stone	stone	skam	0 A MIAM	mingled
Whole-	rock1		Y		Y	Y	Y			KTC 307	Y	Y	Y	Y
Ore chen			Y					Y						
Thin Se		Y	Y	Y	Y	Y	Y			Y	Y	Y	Y	Y
SiO ₂	%		67.35		64.38	45.94	64.91				50.12	54.85	67.13	58.01
Al ₂ O ₃ FeO*	%		16.35 2.65		15.65 3.01	11.49 6.23	15.65 4.11				11.26 9.57	15.61 4.63	15.91 2.93	16.78 7.46
CaO	%		3.30		5.97	32.90	4.24				12.71	11.86	3.51	5.55
MgO	%		1.11		1.69	1.84	1.70				7.40	2.58	1.35	3.07
Na ₂ O	%		3.23		3.31	0.48	3.55				0.50	1.65	3.53	3.97
K_2O	%		4.80		4.80	0.23	4.64				4.21	7.08	4.54	3.32
Cr ₂ O ₃	%		0.01		0.01	0.01	0.01				0.05	0.01	0.01	0.01
TiO2 MnO	%		0.75 0.02		0.66 0.05	0.51 0.23	0.69 0.07				3.03 0.13	0.93 0.07	0.59 0.03	1.01 0.18
P2O5	%		0.20		0.22	0.09	0.21				0.51	0.31	0.24	0.40
SrO	%		0.07		0.09	0.05	0.07				0.07	0.15	0.07	0.09
BaO	%		0.15		0.15	0.01	0.14				0.43	0.27	0.16	0.15
LOI			2.03		0.55	1.62	0.57				2.99	1.44	1.09	1
Ag	ppm		<0.5		<0.5	<0.5	<0.5	0.2			<0.5	<0.5	<0.5	<0.5
Al	%		5		1.0	27	1 1	1.02 175.5			101	2	2 4	0.7
As Au	ppm ppm		5 <0.005		1.9	2.7	1.1	0.076			101	3	3.4	0.7
B	ppm							20						
Ba	ppm		1415		1200	86.3	1150	780			3490	2210	1275	1230
Be	ppm							8.44						
Bi	ppm		0.14		0.06	0.02	0.04	2.01			0.01	0.17	0.07	0.1
C Ca	%		0.05		0.02	0.3	0.02	0.57			0.21	0.14	0.06	0.04
Cd	ppm		<0.5		<0.5	0.8	<0.5	1.87			0.6	<0.5	<0.5	0.7
Ce	ppm		108		102	51.8	102	82.9			91.5	84.8	87	91.9
Co	ppm		4		8	8	10	187			45	13	5	21
Cr	ppm		30		30	20	40	13			340	20	30	30
Cs	ppm		4.2		1.79	5.44	3.43	0.58			10.25	3.36	2.1	6.52
Cu	ppm		4		10	3	8	20.2			35	32	8	28
Dy Er	ppm		4.27 2.2		3.68 1.96	2.37 1.34	3.53 1.96				4.66 1.95	3.62 1.86	2.73 1.47	3.68 1.93
Eu	ppm ppm		1.48		1.53	0.93	1.48				2.58	1.56	1.47	1.83
Fe	%							28.2						
Ga	ppm		21.3		21.1	15.3	21.1	2.47			16.6	20.1	19.8	20.6
Gd	ppm		5.32		4.75	3.33	4.34				6.36	5.04	3.53	4.88
Ge Hf	ppm		<5 6.2		<5	<5 4.2	<5 7.2	0.43			<5 5.4	<5	<5 5.3	<5
Hg	ppm ppm		0.01		6.6 0.009	4.2	0.007	0.1 0.11			0.01	5.4 0.019	0.01	5.5 0.006
Но	ppm		0.84		0.71	0.48	0.67	0.11			0.81	0.7	0.52	0.71
In	ppm		0.013		0.01	0.073	0.013	0.22			0.026	0.016	0.006	0.017
К	%							0.1						
La	ppm		59		53.9	22.7	55.3	38.8			45.7	41.9	47.3	48.1
Li	ppm		30		20	10	20	5.1			30	10	20	30
Lu Mg	ppm %		0.34		0.3	0.21	0.32	0.04			0.23	0.21	0.22	0.28
Mn	ppm							16000						
Mo	ppm		14		2	2	1	15.6			<1	2	1	2
Na	%							0.03						
Nb	ppm		17.9		15.7	20.8	16	0.11			40.3	13.5	14.1	13.1
Nd	ppm		42.7		37.1	25	36.9	551			41.3	35.8	30.6	37.6
Ni P	ppm ppm		4		10	6	9	551 3110			161	9	5	10
Pb	ppm		15		11	3	21	36.7			5	13	11	50
Pr	ppm		12.55		11.1	6.89	11.2				10.95	10.2	9.41	10.55
Rb	ppm		183.5		139.5	8.4	165	2.1			161	187.5	144.5	135.5
Re	ppm		0.002		< 0.001	0.001	0.001	0.001			0.001	0.001	< 0.001	< 0.001
S	%		0.13		< 0.01	0.01	< 0.01	0.11			0.01	< 0.01	0.01	0.01
Sb Sc	ppm ppm		0.59 7		0.19 7	0.15 6	0.11 7	2.18 6.7			9.08 22	1.61 8	0.23	0.06
Se	ppm		0.8		<0.2	0.4	0.2	3.9			0.7	0.4	<0.2	<0.2
Sm	ppm		7.21		6.52	4.64	6.81				8.38	6.95	5.24	7.02
Sn	ppm		2		3	7	1	0.5			2	2	2	2
Sr	ppm		637		769	419	609	69.7			584	1225	558	778
Та	ppm		1.4		1.2	1	1.2				2.5	0.9	21.2	0.8
Tb Te	ppm ppm		0.81 0.03		0.61 <0.01	0.43 0.01	0.64 <0.01	0.25			0.92 0.02	0.66 0.03	0.52 0.01	0.69 <0.01
Th	ppm		26.2		24.3	8.52	23.7	2.8			4.09	15.9	20.6	11.05
Ti	%							< 0.005						
TI	ppm		0.14		0.03	< 0.02	0.1	0.15			0.73	0.06	0.11	0.06
Tm	ppm		0.33		0.32	0.17	0.27				0.28	0.25	0.22	0.27
U V	ppm		5.15 83		4.28	2.89 163	4.57 87	4.38 77			1.18 258	2.99 122	3.7	2.96 158
w	ppm ppm		2		85 1	163	2	0.55			258	2	65 1	4
Y	ppm		22		20.1	14	19.7	86.7			21.5	18.8	14.8	20.5
Yb	ppm		2.12		1.95	1.26	1.9				1.58	1.62	1.46	1.95
Zn	ppm		35		30	48	50	1880			87	50	16	286
Zr	ppm		234	1. 10007	254	164	287	2.8	(81)		230	219	208	227
Major oxides	s are reported	in weight perc	ent normalize	a to 100% and	ivarous. Abbre	viations are s	ime as man un	us in geologic	: man (Plate 1)					

 Zn
 ppm
 55
 30
 48
 50
 1880

 Zr
 ppm
 234
 254
 164
 287
 2.8

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are same as map units in geologic map (Plate 1).
 Samples "KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for US. Gold Corp.
 Whole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Table A1	Multi-element	geochemistry	of	unaltered and	altered rocks

Sample	ID	KS068	KS069	KS070	KS071	KS072	KS073	KS074	KS075	KS076	KS077	KS078	KS079	KS080
UTM	East	537785	537322	537298	537298	537261	537197	537175	537179	537231	537366	537304	537214	53771
NAD27	North	44 16879	44 16196	44 16192	44 16191	44 16154	4416090	44 16156	44 16149	4416189	44 16264	44 16289	44 16387	44 1617
Unit		Twd	Dhc	Tgd	Dhc	Tgd	Dhc	Dew	Tgd	Tgd	Tgd	Tgd	Tgd	Ovb
						endo-			sodic-			2	8	
Comment/A	lteration		skarnoid	chlorite	skarnoid	skam	jasperoid	marble	calcic	chlorite	clay			
Whole-r	ock1	Y	KTC231						Y	Y	Y	Y	Y	Y
Ore chem	istry						Y				Y	Y		
Thin Sec		Y	2		Y		-		Y	Y	Ŷ	Ŷ	Y	
SiO ₂	%	64.12							59.98	62.44	67.53	61.90	60.81	45.15
Al ₂ O ₃	%	16.13							16.24	16.63	16.40	17.04	17.07	17.30
FeO*	%	5.23							4.90	5.45	2.10	5.57	4.78	10.58
CaO	%	4.55							5.41	4.76	2.52	4.49	6.25	8.71
MgO	%	1.87							2.94	2.50	1.42	2.79	2.57	4.70
Na ₂ O	%	3.14							5.20	3.74	3.54	2.90	3.93	3.49
	%													
K ₂ O		3.43							3.79	3.04	5.23	3.66	3.08	3.68
Cr ₂ O ₃	%	0.01							0.01	0.01	0.01	0.01	0.01	0.01
TiO ₂	%	0.85							0.91	0.86	0.61	0.88	0.93	4.05
MnO		0.11							0.05	0.05	0.03	0.10	0.06	0.18
P_2O_5	%	0.34							0.29	0.29	0.24	0.34	0.31	1.36
SrO	%	0.07							0.08	0.08	0.08	0.09	0.07	0.16
BaO	%	0.15							0.20	0.13	0.30	0.23	0.13	0.63
LOI		0.77							1.57	1.9	2.62	2.08	1.25	9.12
Ag	ppm	<0.5					0.22		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Al	%						0.58							
As	ppm	0.7					233		1	3.7	5.4	6.3	7.8	9.6
Au	ppm	1					0.008				< 0.005	< 0.005		
В	ppm	1					<10							
Ba	ppm	1195					140		1665	1125	2740	2060	1090	4880
Be	ppm	1					0.29							
Bi	ppm	0.01					0.09		0.01	0.02	0.03	0.02	0.01	0.02
c	%	0.03							0.06	0.05	0.12	0.01	0.09	1.49
Ca	%						0.22							
Cd	ppm	<0.5					0.71		<0.5	<0.5	1.3	<0.5	<0.5	<0.5
Ce	ppm	104.5					18.55		81.4	82.5	83.4	83.9	80.2	169
Co	ppm	11					3.9		11	10	3	10	9	26
Cr	ppm	30					33		30	30	20	20	20	30
Cs	ppm	2.26					0.18		3.43	3.82	10.4	22.5	12.4	1.7
Cu	ppm	9					15.6		5	9	6	8	6	34
Dy	ppm	4.92							3.98	3.81	2.88	3.74	4.1	6.48
Er	ppm	2.62							1.98	1.97	1.37	1.88	2.2	3.03
Eu	ppm	1.68							1.68	1.63	1.19	1.65	1.54	3.82
Fe	%	1.08					1.77		1.08	1.05	1.19	1.05	1.54	5.82
Ga	ppm	20.4					2.04		20.3	20.9	20.9	21.7	20.7	21
Gd	ppm	5.8					2.04		4.84	4.91	4.62	5.54	5	8.88
Ge	ppm	<5					< 0.05		<5	<5	<5	<5	<5	<5
Hf	ppm	6.3					0.16		4.9	5.4	5.9	5.8	5.7	8.1
Hg		<0.005					0.44		<0.005	0.009	0.012	0.01	0.01	0.007
Но	ppm ppm	0.97					0.44		0.75	0.71	0.52	0.77	0.83	1.2
In	ppm	0.024					0.049		0.012	0.014	0.019	0.014	0.013	0.067
ĸ	%	0.024					0.049		0.012	0.014	0.017	0.014	0.015	0.007
La		54.7					11.2		42.4	43.2	49.9	45.4	41.5	85.2
	ppm	20							<10	20		20		60
Li Lu	ppm	0.39					2.2		0.27	0.3	20 0.21	0.25	10 0.29	0.35
	ppm	0.39					0.05		0.27	0.5	0.21	0.25	0.29	0.55
Mg	%													
Mn	ppm						137							
Mo	ppm	2					3.61		1	3	1	2	2	1
Na	%	10					< 0.01		10.0	11.0	10 (12.4	11.0	04.0
Nb	ppm	18					0.28		10.9	11.9	12.6	12.4	11.9	96.2
Nd	ppm	42.1					20.2		33.7	34.5	37.1	38.9	34.3	71.9
Ni	ppm	8					29.3		5	4	2	2	4	14
P	ppm						520		c	10		10	10	~
Pb	ppm	22					10.2		9	10	17	18	18	9
Pr	ppm	11.95							9.42	9.63	10.8	10.5	9.28	20
Rb	ppm	112					1.2		98.7	97.7	170.5	120	104	66.4
Re	ppm	0.001					0.002		< 0.001	<0.001	< 0.001	< 0.001	0.003	0.001
s	%	0.01					0.08		0.01	0.05	0.01	0.07	0.05	0.05
Sb	ppm	0.11					34.6		0.36	0.53	1.71	0.73	3.48	0.24
Se	ppm	11					1.9		10	10	6	11	9	9
Se	ppm	<0.2					<0.2		<0.2	0.4	0.2	<0.2	0.4	0.3
Sm	ppm	8.03							6.28	7.03	5.94	6.8	6.51	12.25
Sn	ppm	2					0.9		2	2	1	2	1	2
Sr	ppm	606					113.5		719	708	684	755	639	1260
Та	ppm	1.2							0.7	0.8	0.9	0.8	0.7	6.1
Tb	ppm	0.8							0.7	0.68	0.58	0.72	0.74	1.21
Te	ppm	< 0.01					0.11		<0.01	<0.01	0.01	< 0.01	0.01	< 0.01
Th	ppm	16.75					4.8		10.65	13.1	15.25	12.65	12.65	8.86
Ti	%	1					0.006							
TI	ppm	0.13					0.21		0.07	0.13	0.16	0.15	1.33	0.06
Tm	ppm	0.4							0.29	0.3	0.2	0.28	0.29	0.43
U	ppm	3.31					1.56		2.4	3	3.09	3.02	2.52	2.27
v	ppm	87					38		139	121	57	122	119	213
w	ppm	1					2.95		2	1	2	1	2	2
Y	ppm	27.4					2.95		20.7	20.9	14.8	20.2	22.2	31.2
Yb	ppm	2.71							1.84	1.78	1.31	1.83	2.01	2.47
Zn	ppm	87					100		25	36	130	58	47	104
	ppm	259					3.6		186	212	231	227	219	388

 Zr
 ppm
 259

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are same as map units in geologic map (Plate 1).

 Samples "KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Cop.

 'Whole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Tabl	e A1. Multi-eleme	nt geochemistr	y of unaltered	and altered i	ocks.
	6 L IB	L/COO1	VCAAA	1/00.03	17

Table A1. Mu	lti-element	geochemistry	of unaltered	l and altered r	rocks.								
Sample	ID	KS081	KS082	KS083	KS084	KS085	KS086	KS087	KS088	KS089	KS090	KS091	KS092
UTM	East	537752	538645	538645	538684	538713	538743	538873	538873	538852	538911	539047	539007
NAD27 Unit	North	44 16125 Ovb	44 17211 Ovb	44 17184 Ov	44 17199 Twd	44 17217 Twd	44 17226 Twd	4417373 Twd	44 17373 Twd	44 17418 Twd	44 17483 Twd	44 17735 Dhc	44 17526 Ovb
Comment/Al	tona tio n	0.0	010		mingled	1.04	1.04	Ksp-		Titu		skarnoid	0.0
		KTC224	Y	lim	Y		Y	phyric	qz veins	Y	chlorite Y	SKallioki	VTC 495
Whole-ro Ore chemi		KTC234	Y Y	Y	r		Y	Y	Y	r	r		KTC485
Thin Sect		Y	Ŷ	Ŷ	Y		Ŷ	Y	•	Y	Y		Y
SiO ₂	%		47.69		66.45		64.12	70.74		65.12	61.45		
Al ₂ O ₃ FeO*	%		17.21		14.71		16.44	14.58		15.07	16.06		
CaO	%		3.63 20.11		2.81 4.65		4.50 3.92	2.11 2.31		5.87 2.48	4.49 3.44		
MgO	%		5.47		2.95		1.99	1.15		1.73	2.12		
Na ₂ O	%		1.37		3.17		3.08	3.01		3.71	6.19		
K2O Cr2O3	% %		0.68 0.01		3.93 0.01		4.65 0.01	5.22 0.01		4.87 0.01	4.94 0.01		
TiO ₂	%		2.88		0.75		0.75	0.46		0.63	0.82		
MnO	%		0.09		0.05		0.05	0.02		0.04	0.08		
P ₂ O ₅	%		0.72		0.32		0.25	0.14		0.23	0.24		
SrO BaO	% %		0.09 0.05		0.06 0.14		0.07 0.18	0.05 0.21		0.06 0.19	0.06 0.11		
LOI	70		1.85		1.76		2.11	1.53		1.35	1.32		
Ag	ppm		0.5	3.46	<0.5		0.5	<0.5	0.15	<0.5	<0.5		
Al	%		101.5	0.54	10.2		87.0	27	0.43	0 2	6.2		
As Au	ppm ppm		101.5 0.013	193.5 0.012	48.3		87.9 <0.005	2.7	9.4 <0.005	8.3	6.3		
B	ppm			<10			5.005		<10				
Ba	ppm		472	830	1230		1655	1660	50	1555	880		
Be Bi	ppm		0.71	0.28 8.42	0.06		0.06	0.43	0.36	1.5	0.3		
C	ppm %		0.01	0.42	0.04		0.03	0.43	1.21	0.03	0.08		
Ca	%			0.3					0.85				
Cd	ppm		<0.5	0.31	<0.5		<0.5	<0.5	0.18	<0.5	<0.5		
Ce Co	ppm ppm		159.5 9	68.5 5.6	84.2 5		99.7 8	106.5 4	13.05 1.5	136.5 17	102 11		
Cr	ppm		10	16	30		20	20	8	20	30		
Cs	ppm		8.8	0.47	8.68		3.55	7.73	1.4	9.81	3.45		
Cu	ppm		24	51.9	18		24	19	11.5	63	9		
Dy Er	ppm ppm		5.43 2.6		4.05 2.28		3.97 2.19	3.29 1.65		3.64 1.91	3.7 1.87		
Eu	ppm		3.27		1.48		1.66	1.22		1.47	1.48		
Fe	%			1.59					0.68				
Ga Gd	ppm		22.3 7.87	2.07	19.5 5.05		21.7 5.3	18.5 4.3	2.26	19.5 5.01	19.8 4.75		
Ge	ppm ppm		6	0.08	<5		<5	<5	0.25	<5	<5		
Hf	ppm		6.4	0.13	5.8		6.6	6.2	0.3	5.8	6.3		
Hg	ppm		0.014	4.75	0.008		0.012	< 0.005	0.03	< 0.005	< 0.005		
Ho In	ppm ppm		1.01 0.017	0.146	0.81 0.02		0.78 0.033	0.61 0.009	0.007	0.71 0.056	0.68 0.012		
ĸ	%			0.19					0.07				
La	ppm		84.3	26.2	43.2		50.8	59.5	6.4	76.9	55.2		
Li Lu	ppm ppm		20 0.35	4.7	20 0.32		20 0.33	20 0.27	4.5	30 0.29	30 0.28		
Mg	%		0.55	0.05	0.52		0.55	0.27	0.12	0.29	0.28		
Mn	ppm			213					254				
Mo	ppm		11	11.9	2		3	1	1.16	2	1		
Na Nb	% ppm		101.5	0.01 0.16	14.1		16.6	16.4	0.03 3.15	17.7	16.6		
Nd	ppm		66.6		36.5		41.7	38.5		47.9	38.8		
Ni	ppm		21	9.8	18		2	4	2.1	7	10		
P Pb	ppm		13	1000 113	7		10	21	290 23.6	11	15		
PD Pr	ppm ppm		19.25	115	10.3		10	11.8	23.0	14.3	11.75		
Rb	ppm		27.4	4.9	144.5		124.5	159	4.1	135.5	139.5		
Re	ppm		0.008	0.001	< 0.001		0.001	< 0.001	<0.001	0.001	< 0.001		
S Sb	% ppm		0.21 3.46	0.21 11.6	0.02 1.8		0.17 1.51	0.01 1.07	<0.01 2.81	0.01 3.4	0.05 2.13		
Sc	ppm		11	3.6	9		10	4	1.4	8	8		
Se	ppm		0.5	1.4	0.3		1.6	<0.2	0.2	0.2	<0.2		
Sm Sn	ppm		10.6 17	2	6.75 3		7.33 3	6.79 2	1	8.1 2	6.94 2		
Sr	ppm ppm		738	72.6	530		623	440	25.9	478	493		
Та	ppm		5.7		0.9		1.2	1.2		1.2	1.2		
Tb To	ppm		1.09	10.15	0.69		0.71	0.62	0.5	0.67	0.66		
Te Th	ppm ppm		3.13 8.73	10.15 8	0.26 16.15		0.21 22.1	0.09 27.2	0.5 9.5	0.28 22.2	0.07 22.8		
Ti	%			< 0.005					0.068				
TI	ppm		0.11	0.4	0.58		0.14	0.39	0.1	0.79	0.14		
Tm U	ppm		0.37 3.29	1.22	0.34 3.76		0.31 4.4	0.26 4.53	1.26	0.27 4.24	0.27 3.96		
v	ppm ppm		307	34	167		4.4	4.33	23	4.24	89		
w	ppm		23	0.94	4		3	2	0.84	2	1		
Y Yb	ppm		27.9 2.32	7.56	24.4 2.24		22.2 2.01	19 1.64	6.08	20.1 1.95	20.6 1.91		
Zn	ppm ppm		2.32 90	132	31		45	24	24	27	70		
Zr	ppm		321	2.7	228		256	241	7	220	249		
Major oxides a	are renorted	in weight nerc	ent normalize	d to 100% and	wdrous Abbra	viations are s	me as man un	its in geologic	man (Plate 1)				_

 Zn
 ppm
 90
 132
 31
 45
 24
 24

 Zr
 ppm
 321
 2.7
 228
 256
 241
 7

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are same as map units in geologic map (Plat 1).
 Samples "KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.
 1Whole-rock geochemistry not submitted for outcrops previously sampled to avoil repeat analyses. Equivalent sample indicated.

Table A1. Multi-element	googh amistry of	f unaltored and	altored reals
Table AL. Muu-element	geochemistry of	i unantereu a nu	antereu rocks.

Samp UTM NAD27	ple ID East North	K8093 538999 441753	KS094 539028 441740	KS095 539013 441738	KS095b 539956 441758	KS096 539903 441755	KS097 539851 441750	KS098 539808 441772	KS099 539790 441789	KS100 539776 441845	KS101 539535 441762	KS102 539549 441757	KS103 539576 4417609	KS104 539550 441744
	nit	4 Twd	8 Twp	0 Twp	7 Trp	1 Trp	9 Trp	9 Trp	1 Trp	2 Ov	2 Twp	9 Tmd	Trp	7 Tmd
Comment	/Alteration				clay	clay			clay	lim			clay/chlorit e	sodic- calcic
Whole		Y	Y	Y		Y		Y	Y		Y	Y	Y	Y
Ore ch Thin S		Y	Y	Y		Y	Y	Y	Y	Y	Y	Y	Y	Y
SiO ₂	%	62.98	64.88	67.27		73.63		71.93	80.75		69.69	63.34	73.21	62.04
Al ₂ O ₃	%	15.80	15.73	15.45		13.60		13.99	12.42		14.44	15.53	13.82	18.37
FeO* CaO	%	5.82 4.13	4.47 4.17	3.28 3.74		1.84 1.88		2.62 2.01	0.80 0.11		3.18 2.32	5.15 4.57	2.35 0.88	4.26 4.67
MgO	%	2.62	1.96	1.83		0.95		0.75	0.37		1.22	2.39	0.82	2.47
Na ₂ O	%	3.63	3.17	3.03		2.53		3.34	0.12		2.97	3.11	3.04	3.04
K2O Cr2O3	%	3.67 0.01	4.36 0.01	4.34 0.01		4.96 0.01		4.78 0.01	5.04 0.01		5.27 0.01	4.41 0.01	5.23 0.01	3.71 0.01
TiO ₂	%	0.85	0.75	0.59		0.24		0.29	0.18		0.49	0.84	0.29	0.82
MnO	%	0.02	0.08	0.03		0.09		0.07	0.01		0.06	0.12	0.06	0.08
P2O5 SrO	%	0.28 0.05	0.23 0.06	0.24 0.05		0.08 0.04		0.10 0.03	0.02 0.01		0.18 0.04	0.31 0.06	0.13 0.02	0.28 0.08
BaO	%	0.14	0.14	0.15		0.15		0.09	0.15		0.14	0.17	0.13	0.17
LOI		1.51	3.18	1.87		3.22		0.79	2.35	0.5	1.19	1.29	1.74	2.81
Ag Al	ppm %	<0.5	<0.5	<0.5		<0.5		<0.5	<0.5	0.5 0.31	<0.5	<0.5	<0.5	0.6
As	ppm	4.3	0.9	5.8		5.1		2	46.1	358	21.9	15.3	32.3	10.7
Au P	ppm									0.016 <10				
B Ba	ppm ppm	1210	1215	1270		1215		707	1255	<10 340	1225	1330	1075	1350
Be	ppm									0.13				
Bi C	ppm %	0.13 0.05	0.05 0.19	0.14 0.05		0.03 0.3		0.09 0.06	0.76 0.04	0.93	0.12 0.02	0.14 0.02	0.31 0.03	0.29 0.03
Ca	%	0.05	0.17	0.05		0.5		0.00	0.04	0.18	0.02	0.02	0.05	0.05
Cd	ppm	<0.5	<0.5	<0.5		0.5		<0.5	<0.5	0.12	0.6	0.8	1.1	<0.5
Ce Co	ppm	112.5 9	105.5 11	92.8 4		90 3		59.1 4	46	15.2 0.4	82.3 7	107.5 12	66.9 3	92.7 9
Cr	ppm ppm	30	30	20		20		30	20	11	40	60	30	40
Cs	ppm	6.38	2.95	4.12		2.28		3.36	4.19	0.75	2.24	2.76	2.45	1.66
Cu Dy	ppm ppm	22 4.84	9 3.47	32 3.69		4 2.81		9 3.1	3 1.52	22.8	14 3.47	12 4.33	23 2.92	4 3.61
Er	ppm	2.51	2.03	2.01		1.65		1.69	1.12		1.85	2.47	1.53	1.66
Eu	ppm	1.83	1.43	1.4		0.9		0.8	0.48		1.18	1.47	0.92	1.8
Fe Ga	% ppm	21.6	20.4	19.6		17.8		18.7	16.4	1.51 2.24	19.6	19.9	18.2	22.5
Gd	ppm	5.61	4.59	4.45		3.89		3.67	1.77	2.2.1	4.63	5.49	3.56	4.73
Ge	ppm	<5	<5	<5		<5		<5	<5	< 0.05	<5	<5	<5	<5
Hf Hg	ppm ppm	6.7 0.006	6.4 <0.005	5.8 <0.005		3.8 <0.005		3.9 <0.005	3.4 0.013	0.05 0.24	5.4 0.015	7.2 0.008	4.2 <0.005	5.5 <0.005
Но	ppm	0.91	0.72	0.71		0.54		0.61	0.32		0.67	0.81	0.53	0.63
In	ppm	0.03	0.017	0.045		0.025		0.021	<0.005	0.02	0.014	0.013	0.042	0.008
K La	% ppm	55.2	57.6	51.4		50.2		30.7	25.2	0.22 6.9	43.3	56.3	36.2	49.1
Li	ppm	30	20	20		10		10	20	3	10	10	10	10
Lu Mg	ppm %	0.37	0.29	0.31		0.22		0.25	0.16	0.07	0.3	0.33	0.24	0.26
Mn	ppm									49				
Mo	ppm	1	1	2		1		3	1	5.04	1	1	2	<1
Na Nb	% ppm	16.6	16.1	15.1		14.6		16.1	13.9	0.01 0.11	16.9	17.3	15.5	14.4
Nd	ppm	44.2	38.7	34.8		31.8		23.7	14.4	0.11	32.5	42.6	26.1	36.7
Ni B	ppm	3	8	5		3		2	2	2.5	9	12	6	6
P Pb	ppm ppm	9	19	20		24		23	23	440 72.7	18	20	80	38
Pr	ppm	13.1	11.75	10.65		10.05		6.63	4.78		9.54	12.3	7.71	10.75
Rb Re	ppm	129.5 <0.001	152.5 <0.001	117.5 <0.001		178 <0.001		168.5 <0.001	193.5 <0.001	11.4 0.001	223 0.003	159.5 <0.001	178.5 0.001	112 <0.001
Re S	ppm %	<0.001 0.01	<0.001 0.05	<0.001 0.01		0.01		0.02	<0.001 0.04	0.001	0.003	<0.001 0.01	0.01	<0.001 0.01
Sb	ppm	1.45	0.35	0.5		0.43		0.23	0.3	5.39	1.25	0.91	0.75	0.95
Sc Se	ppm	12 0.2	7 <0.2	8 0.4		4 0.3		5 0.3	4 0.7	3.5 1.4	7 <0.2	10 0.3	5 0.4	8 0.2
Sm	ppm ppm	7.86	6.52	6.33		5.6		4.9	2.57		6.41	7.84	5.1	6.79
Sn	ppm	12	2	5		3		3	2	0.3	2	2	3	3
Sr Ta	ppm ppm	475 1.1	513 1.2	417 1		335 1.2		260 1.3	97.1 1.1	31.6	371 1.3	549 1.1	247 1.2	749 0.8
Tb	ppm	0.83	0.66	0.65		0.54		0.59	0.31		0.67	0.78	0.56	0.65
Te Th	ppm	< 0.01	0.01	0.06		0.01		<0.01 16.3	0.02	0.41	0.02	0.01	<0.01	0.18
Th Ti	ppm %	21.6	23.7	22.4		18.95		10.5	14.7	1.8 <0.005	18.6	21.7	17.3	14.4
TI	ppm	0.66	0.07	0.18		0.13		0.21	0.58	0.76	0.15	0.1	0.14	0.07
Tm	ppm	0.38	0.27	0.3		0.23		0.24	0.17	0.64	0.3	0.35	0.22	0.28
U V	ppm ppm	4.33 113	4.93 90	4.57 84		4.55 24		5.34 33	4.31 19	0.64 43	4.8 71	3.34 112	4.74 54	2.79 101
W	ppm	1	1	3		2		1	2	0.91	2	2	2	1
Y Yb	ppm	26.5 2.56	20.4 2.06	21 2.05		16.1 1.44		17.5 1.68	10.3 1.23	1.63	20.5 1.83	23.4 2.04	16.1 1.47	19.1 1.63
YD Zn	ppm ppm	2.56	2.06	2.05		1.44		62	1.23	11	43	2.04 140	231	82
Zr	ppm	265	256	219		132		134	102	1.9	203	293	141	231

Table A1. Multi-element geochemistry of unaltered and altered rocks.

Sampo UTM NAD27	e ID East North	KS105 539569 4417387	KS106 539544 4417347	KS107 539971 4417387	KS108 539939 4417327	KS109 539892 4417345	KS110 539514 4417280	KS111 539524 4417283	KS112 539489 4417242	KS113 540035 4417547	KS114A 536139 4416180	KS114B 536139 4416180	KS115 539011 4416621	KS11 53936 441673
Uni		Twp	Tmp	Tmd	Twp	Twp	Tmp	Tmd	Twp	Tmd	Tgd	Tgd	Twp	Tda?
omment/A	lteration				chlorite	chlorite			chlorite					mixed
Whole-		Y			Y	KTC419	KTC 426	Y	Y	Y	Y	Y	Y	altered
Ore chen		1			1	KIC419	KIC 420	1	I	1	1	1	1	Y
Thin Se		Y			Y	Y		Y	Y	Y	Y	Y	Y	Y
SiO ₂	%	64.73			71.12			62.21	63.74	64.41	62.46	60.20	60.88	77.85
Al ₂ O ₃	%	15.89			14.74			15.97	16.12	15.35	17.09	17.39	16.48	13.36
FeO*	%	4.59			3.06			5.63	4.91	4.98	5.27	5.62	6.09	0.43
CaO M-O	%	4.06			1.54			5.29	4.29	4.60	5.05	5.53	5.14	3.18
MgO Na2O	%	2.06 3.01			1.42 2.11			3.00 2.53	2.37 3.06	2.50 2.87	2.25 3.55	2.78 3.88	3.36 2.71	0.38 3.83
K ₂ O	%	4.37			5.19			3.80	4.11	3.84	2.91	3.08	3.74	0.65
Cr ₂ O ₃	%	0.01			0.01			0.01	0.01	0.02	0.01	0.01	0.01	0.01
TiO ₂	%	0.78			0.44			0.93	0.86	0.83	0.83	0.87	0.98	0.13
MnO	%	0.08			0.08			0.10	0.08	0.10	0.09	0.09	0.11	0.03
P_2O_5	%	0.21			0.15			0.30	0.24	0.28	0.28	0.31	0.30	0.04
SrO B: O	%	0.06			0.03			0.07	0.07	0.07	0.07	0.09	0.07	0.07
BaO LOI	%	0.14 3.2			0.11 3.13			0.16 1.58	0.14 4	0.14 1.63	0.14 0.83	0.15 0.76	0.13 4.14	0.04 2.19
Ag	ppm	<0.5			<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Al	%													
As	ppm	2			4.3			21.8	1.2	2.1	0.6	0.6	7.7	1.7
Au	ppm													
B	ppm	1145			065			1200	1005	1225	1200	1070	12/2	2.42
Ba Be	ppm	1145			965			1280	1085	1335	1290	1270	1265	343
Be Bi	ppm ppm	0.02			0.04			0.2	0.03	0.01	0.02	0.01	0.01	<0.01
C	%	0.25			0.07			0.02	0.26	0.01	0.02	0.03	0.28	0.03
Ca	%													
Cd	ppm	<0.5			<0.5			<0.5	<0.5	0.7	<0.5	<0.5	<0.5	<0.5
Ce	ppm	102			74.1			100.5	103.5	99.8	78	64.4	86.4	21.4
Co	ppm	11			6			15	13	12	10	14	14	
Cr	ppm	30			30			60	20	110	20	50	20	10
Cs Cu	ppm ppm	2.29 12			3.97 6			1.92 8	1.96 12	2.89 20	3.86 7	2.86 12	4.03 10	6.52 3
Dy	ppm	3.48			3.43			4.26	3.75	4.15	3.67	2.88	4.31	2.22
Er	ppm	1.94			1.9			2.3	1.99	2.32	1.88	1.58	2.35	1.22
Eu	ppm	1.37			0.97			1.6	1.58	1.44	1.6	1.45	1.64	0.28
Fe	%													
Ga	ppm	19.9			19.7			20.5	19.8	20.7	22.1	20.5	21.5	17.1
Gd	ppm	4.78 <5			4.11 <5			5.72 <5	4.79 <5	5.58 <5	5.24 <5	4.22 <5	5.53 <5	3.17 <5
Ge Hf	ppm ppm	6.3			4.8			7.2	6.1	7.4	6	5.4	6.2	4.8
Hg	ppm	<0.005			0.012			< 0.005	<0.005	<0.005	< 0.005	<0.005	0.007	<0.00
Но	ppm	0.7			0.66			0.82	0.74	0.77	0.72	0.59	0.86	0.42
In	ppm	0.02			0.019			0.014	0.019	0.055	0.022	0.016	0.027	< 0.00
К	%													
La	ppm	55.5			37.7			51.7	55.1	55.6	43.6	35.9	47.4	7.8
Li Lu	ppm ppm	20 0.29			30 0.26			10 0.32	20 0.29	20 0.33	10 0.22	30 0.23	20 0.34	10 0.17
Mg	%	0.27			0.20			0.52	0.29	0.55	0.22	0.25	0.54	0.17
Mn	ppm													
Mo	ppm	1			1			1	<1	4	3	1	1	1
Na	%													
Nb	ppm	15.5			16.5			16.4	15.9	19	13	10	14.6	11.9
Nd Ni	ppm	37.3 9			29 5			40.4	38.8	41.3	34.4	29 11	38.3	17.3
Ni P	ppm ppm	9			c			8	10	7	5	11	5	
Pb	ppm	14			25			13	19	36	22	12	5	16
Pr	ppm	11.3			8.6			11.7	11.65	11.4	9.02	7.57	10.1	3.7
Rb	ppm	149			185.5			104	135.5	128	84.8	83.6	118.5	17.5
Re	ppm	< 0.001			0.001			< 0.001	0.001	< 0.001	0.002	0.001	0.001	< 0.00
S Sb	%	0.01 0.22			0.01 0.7			0.09 1.24	0.02 0.32	0.02 0.67	0.42 0.27	0.01 0.11	0.06 2.8	0.01 0.22
SD	ppm ppm	8			6			1.24	8	9	8	9	2.8	0.22
Se	ppm	0.2			<0.2			<0.2	<0.2	<0.2	0.6	0.2	<0.2	<0.2
Sm	ppm	6.41			5.74			7.6	6.84	7.56	6.63	5.53	7.13	4.18
Sn	ppm	2			3			1	2	2	1	1	2	<1
Sr T	ppm	501			301			581	552	583	611	683	633	656
Ta Tb	ppm	1.2 0.62			1.3 0.6			0.9 0.79	1.1 0.67	1 0.76	0.7 0.69	0.6 0.54	0.9 0.77	1 0.39
Те	ppm ppm	<0.01			<0.01			<0.01	0.07	<0.01	0.09	<0.01	<0.01	< 0.39
Th	ppm	22.8			17.95			17.15	21.7	19.2	13.35	10.7	17.05	17
Ti	%													
TI	ppm	0.06			0.13			0.05	0.04	0.05	0.51	0.33	0.08	0.07
Tm	ppm	0.28			0.27			0.37	0.29	0.32	0.27	0.22	0.35	0.15
U	ppm	4.46			4.59			3.64	4.34	3.92	2.87	2.27	3.93	2.35
V W	ppm	95 2			51 2			118	106	103	86	114	177	1
Y Y	ppm ppm	19.9			18.7			1 23.8	1 20.2	1 22.5	1 20.1	2 16	2 24	12
Yb	ppm	1.95			1.82			2.22	1.99	2.08	1.79	1.43	2.17	1.19
Zn	ppm	68			63			48	75	125	149	83	54	11
Zr	ppm	241			176			288	248	303	242	245	241	172

Table A1. Mu	lti-element	geochemistry	y of unaltered	and altered r	ocks.									
Sample	ID	KS117	KS118	KS119	KS120	KS121	KS122	KS123	KS124	KS125	KS126	KS127	KS128	KS129
UTM	East	539428	539426	539433	539658	539501	539504	540620	540204	540148	540073	539943	540608	538449
NAD27 Unit	North	44 16762	44 16791	44 16806 Td a	44 16832	44 16726 Tda?	44 16702 Tda?	44 16954 ODul	44 17071 Tmd	44 17117 Trud	44 17170 Torra	44 16870 Turd	44 16796 Tour	44 17026
		Tda	Tda	Ida	ODul	mixed/	mixed/		Ima	Tmd	Twp	Tmd sodic-	Tmp	Ov
Comment/Al		clay			marble	altered	altered	marble			chlorite	calcic		lim bx
Whole-ro			Y	Y		Y			Y		Y	Y	Y	
Ore chemi Thin Sect			Y	Y	Y	Y	Y	Y	Y Y	Y	Y	Y	Y	Y
SiO ₂	%	70.19	65.39	64.80	1	63.54		1	65.26	1	71.16	61.80	74.45	
Al ₂ O ₃	%	17.27	17.79	18.11		16.90			15.85		14.31	16.12	14.74	
FeO*	%	0.85	1.64	2.87		2.11			4.83		3.10	3.93	1.27	
CaO	%	5.44	5.18	4.96		9.83			2.54		2.02	6.12	0.44	
MgO Na ₂ O	% %	0.71 4.36	1.23 4.03	0.91 3.55		2.24 3.94			2.54 2.84		1.39 1.84	1.62 3.85	0.35 2.65	
K ₂ O	%	0.45	3.69	3.84		0.16			4.67		5.37	4.94	5.58	
Cr ₂ O ₃	%	0.01	0.01	0.01		0.01			0.01		0.01	0.01	0.01	
TiO ₂	%	0.45	0.49	0.49		0.78			0.88		0.43	0.84	0.15	
MnO	%	0.07	0.07	0.05		0.11			0.08		0.04	0.09	0.01	
P ₂ O ₅	%	0.07	0.18	0.16		0.26			0.31		0.15	0.29	0.10	
SrO BaO	% %	0.10 0.03	0.08 0.22	0.08 0.17		0.07 0.03			0.05 0.15		0.04 0.13	0.09 0.29	0.04 0.21	
LOI	70	2.56	2.09	0.83		5.27			4.03		3.38	2.19	1.86	
Ag	ppm	<0.5	<0.5	<0.5		<0.5	0.08		<0.5		<0.5	<0.5	<0.5	0.11
Al	%						0.04							0.56
As	ppm	6	8.3	3.7		18	11.5		17.8		2.7	1.9	1.2	363
Au	ppm						< 0.005		<0.005					< 0.005
B Ba	ppm ppm	325	2080	1655		283	<10 20		1330		1190	2480	2020	<10 2730
Be	ppm	525	2000	1000		200	0.26		1000			2.00	2020	0.23
Bi	ppm	0.01	0.02	0.01		0.01	0.91		0.29		0.1	0.02	0.01	2.13
С	%	0.34	0.14	0.03		1.01			0.28		0.23	0.26	0.02	
Ca	%	-0 -	<0.5	-0 -		-0 -	22.9		-0 -		-0 -	-0.5	-0 -	0.34
Cd Ce	ppm	<0.5 59.2	<0.5 76.8	<0.5 96.6		<0.5 125.5	0.07 2.13		<0.5 101.5		<0.5 71.8	<0.5 53.1	<0.5 97.2	0.3 28.2
Co	ppm ppm	1	4	5		2	0.4		13		7	5	1	2.3
Cr	ppm	10	10	10		20	0.1		40		30	10	10	20
Cs	ppm	0.89	0.77	0.97		1.48			2.54		3.79	0.93	1.4	0.46
Cu	ppm	2	6	2		5	8.9		8		6	6	3	15.6
Dy	ppm	3.63	6.15	3.9		8.6			4		3.42	3.24	2.18	
Er Eu	ppm	2.08 1.01	3.34 1.84	2.13 1.71		4.5 1.08			2.13 1.53		1.92 1.15	1.79 1.5	0.75 1.23	
Fe	ppm %	1.01	1.04	1.71		1.08	0.24		1.55		1.15	1.5	1.23	1.11
Ga	ppm	22.9	23.5	24.1		22.1	0.13		21.5		18.6	18.1	24.1	1.77
Gd	ppm	4.57	7.22	5.01		12.15			5.93		4.06	4.02	4.08	
Ge	ppm	<5	<5	<5		<5	<0.05		<5		<5	<5	<5	0.05
Hf	ppm	7.7	7.8	7.9		5.6	0.00		7.9 0.009		4.8	7.4	3.4	0.06
Hg Ho	ppm ppm	0.012 0.71	<0.005 1.22	<0.005 0.71		0.015 1.62	0.09		0.009		<0.005 0.64	<0.005 0.61	<0.005 0.29	0.37
In	ppm	0.007	0.006	0.012		0.045	0.007		0.024		0.029	0.039	0.022	0.084
К	%						0.01							0.05
La	ppm	26.5	42.4	54.8		43.1	1.1		59.6		40.8	29.7	55.7	17.6
Li	ppm	10	<10	<10		10	0.4		30		20	10	<10	4.2
Lu Mg	ppm %	0.31	0.41	0.3		0.49	12.7		0.28		0.28	0.26	0.07	0.05
Mn	ppm						1580							87
Mo	ppm	<1	1	2		<1	0.31		1		<1	1	1	7.62
Na	%						0.01							< 0.01
Nb	ppm	14.3	13.1	14.3		19.2	0.07		19.8		17.8	14.6	6.9	0.14
Nd	ppm	29.6	38.2	40.3 1		83 3			45.6 4		30.4 6	24.6	39.2 2	22.3
Ni P	ppm ppm	1		í		5	130		+		0		4	22.5 980
Pb	ppm	5	3	14		5	15.1		39		10	9	18	38.2
Pr	ppm	7.63	9.52	10.9		19.45			13.25		8.4	6.34	10.95	
Rb	ppm	10.6	68.1	105		2.8	0.3		168.5		181.5	100.5	148.5	2.4
Re	ppm	< 0.001	<0.001	< 0.001		< 0.001	<0.001		< 0.001		< 0.001	< 0.001	<0.001	0.001
S Sb	% ppm	0.03 0.53	0.02 0.39	0.04 0.53		0.04 0.68	<0.01 0.73		0.01 0.59		0.01 0.61	0.01 0.51	<0.01 0.05	0.07 26.7
Sc	ppm	4	4	4		10	0.2		10		6	7	2	3.2
Se	ppm	<0.2	<0.2	0.7		0.2	0.3		0.8		<0.2	0.2	0.2	0.3
Sm	ppm	5.89	8.23	7.15		16.95			7.94		5.94	4.8	7.09	
Sn	ppm	2	2	1		1	<0.2		2		3	4	2	2.2
Sr Ta	ppm ppm	863 0.9	746 0.7	750 0.8		646 0.8	60.7		513 1.1		344 1.3	707 0.9	377 0.1	66
Тв	ppm	0.9	1.14	0.8		1.61			0.71		0.64	0.58	0.1	
Te	ppm	<0.01	<0.01	<0.01		0.01	0.24		0.03		< 0.01	<0.01	<0.01	0.76
Th	ppm	18.4	15.05	17.15		12			21.1		18.15	15.5	14.85	3.2
Ti	%	0.01	0.00	0.00		0.02	< 0.005		0.07		0.01	0.6.1	0.1	< 0.005
Tl Tm	ppm	0.04	0.03	0.08		0.02	0.04		0.07		0.21	0.04	0.1 0.08	0.23
I m U	ppm ppm	0.28 2.37	0.46 2.55	0.3 3.37		0.52 2.69	0.1		0.29 3.94		0.27 4.32	0.25 3.6	1.85	0.87
v	ppm	37	48	43		108	3		99		4.52	82	5	42
W	ppm	1	1	1		1	0.43		1		1	1	1	1.27
Y	ppm	19.6	34.7	21		41.7	2.17		21.5		19.1	18.1	8.6	13.9
Yb	ppm	2.02	2.82	1.96		3.45	24		1.94		1.79	1.72	0.49	60
Zn Zr	ppm ppm	20 325	33 327	41 334		62 228	24		99 320		46 180	56 297	40 111	60 1.8
11	Phm	543	241			220			520		100	2/1	111	1.0

 Lr
 ppm
 323
 321
 334
 228
 320

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are same as map units in geologic map (Plate 1).
 Samples
 KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.
 'Whole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Table A1	Multi-element	geochemistry	of	unaltered and	altered rocks

Sample	ID	geochemistry KS130	KS131	KS132	KS133	KS134	KS135	KS136	KS137	KS138	KS139	KS140	KS141	KS142
UTM	East	538351	538384	538910	541366	541747	541388	540847	537931	539354	539354	539354	540054	539354
NAD27	North	44 17071	44 17196	44 18000	44 16857	44 16881	44 17035	44 17719	44 19755	44 19536	44 19536	44 19536	44 17754	44 19536
Unit		gossan	Twd	Twq	Ta	Tvc	Ta	Tvc	Twq	COcb	Ta	Та	Tda	Та
Comment/Al	teration	gossan	sodic-	endo-	float	float	oxidizad	clay	@530m	@222m	@330m	@376m	@16m,	@412m,
Comment/A	uci a uon	gossan	calcic	skam				-	(a) 50m	clay	clay	clay	clay	clay
Whole-ro			Y	Y	Y	Y	Y	Y	Y	Y			Y	Y
Ore chemi		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Thin Sect SiO ₂	10 N		4 62.60	۲ 67.48	4.38	¥ 84.16	64.52	r 81.82	68.12	48.67	r	r	r 70.33	63.44
Al ₂ O ₃	%		15.88	15.92	16.64	9.98	16.92	11.31	15.25	15.55			18.03	16.77
FeO*	%		4.38	1.04	5.00	0.80	4.83	1.07	3.49	13.04			2.35	4.22
CaO	%		4.34	5.60	4.52	0.17	4.77	0.08	2.75	1.04			0.45	1.91
MgO	%		1.58	1.52	2.14	0.50	1.53	0.44	1.63	13.37			1.23	2.62
Na ₂ O	%		3.93	3.57	2.74	0.34	3.18	0.09	3.34	0.06			0.54	0.19
K2O Cr2O3	% %		5.71 0.01	3.69 0.01	3.14 0.01	3.64 0.01	2.77 0.01	4.78 0.01	4.46 0.01	2.89 0.07			5.97 0.01	9.31 0.01
TiO ₂	%		0.84	0.64	0.75	0.22	0.75	0.11	0.55	3.95			0.42	0.82
MnO	%		0.08	0.03	0.20	0.02	0.08	0.02	0.07	0.10			0.02	0.02
P_2O_5	%		0.32	0.24	0.27	0.02	0.25	0.04	0.15	0.67			0.12	0.29
SrO	%		0.10	0.09	0.07	0.01	0.12	0.01	0.05	0.01			0.04	0.04
BaO	%		0.22	0.18	0.14	0.13	0.28	0.22	0.13	0.58			0.49	0.35
LOI			0.87	1.02	2.51	2.26	2.89	2.55	0.84	8.25			5.47	5.83
Ag	ppm	0.8	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5
Al	%	0.37 637	15	10.8	1 1	21.4	10	11.1	0.9	121			10 <i>E</i>	51 1
As Au	ppm ppm	0.017	1.5	10.8	1.1	21.4	4.9	11.1	0.9	121			10.6	51.1
B	ppm	<10												
Ba	ppm	1090	2080	1750	1350	1215	2530	2070	1275	4670			4660	3260
Be	ppm	0.07												
Bi	ppm	1.3	0.17	0.04	0.03	0.26	0.02	0.16	0.02	0.01			0.09	0.03
с	%		0.05	0.04	0.17	0.03	0.06	0.02	0.05	0.04			0.01	0.25
Ca	%	0.44	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	-0 E
Cd Ce	ppm	1.18 35.3	0.5 139	<0.5 76.1	<0.5 83.2	<0.5 21.1	<0.5 81.2	<0.5 84.3	<0.5 106.5	<0.5 88.7			<0.5 108	<0.5 71.2
Co	ppm ppm	1.5	8	3	10	1	11	1	9	54			9	12
Cr	ppm	14	20	20	20	40	20	10	30	450			10	20
Cs	ppm	0.18	5.63	1.69	1.47	5.12	38.6	3.06	8.52	6.43			6.7	14.25
Cu	ppm	73.4	6	5	13	4	9	3	6	67			120	4
Dy	ppm		5.22	3.69	3.66	1.64	3.34	2.58	3.28	5.75			4.15	3.02
Er	ppm		2.63	2.2	2	1.39	1.91	1.64	1.62	2.69			2.22	1.95
Eu	ppm		1.79	1.43	1.48	0.28	1.43	0.81	1.35	2.8			1.75	1.34
Fe	%	1.18	22.2	21.2	22	14.5	20.5	16.2	21.7	21.7			22.6	17.5
Ga Gd	ppm	1.85	22.3 6.26	21.3 4.93	22 4.82	14.5 1.45	20.5 4.3	16.3 3.25	21.7 4.37	21.7 7.22			22.6 5.41	17.5 4.16
Ge	ppm ppm	0.05	<5	<5	<5	<5	<5	<5	<5	<5			<5	<5
Hf	ppm	0.22	7.5	6.1	5.8	4.3	6	3.9	5.6	6.7			8.7	5.6
Hg	ppm	0.47	< 0.005	0.011	0.01	0.01	0.012	0.03	0.005	0.015			0.012	0.007
Но	ppm		0.94	0.75	0.76	0.4	0.71	0.58	0.6	1.06			0.83	0.66
In	ppm	0.151	0.021	0.01	0.037	0.012	0.028	0.006	0.022	0.074			0.017	0.008
K	%	0.02	0.6.4	27.0	16.5	10.6	16	40.7	(2.2	45.0			(2.0	20.4
La	ppm	28.4 1.9	86.4 10	37.2	46.5	18.6 20	46 20	48.7 10	62.2 30	45.8			63.9 30	39.4
Li Lu	ppm	1.9	0.38	10 0.29	20 0.3	0.28	0.32	0.26	0.26	60 0.32			0.34	20 0.32
Mg	ppm %	0.12	0.58	0.29	0.5	0.28	0.32	0.20	0.20	0.32			0.54	0.32
Mn	20 ppm	129												
Mo	ppm	10.3	9	1	2	3	2	2	4	<1			4	2
Na	%	0.01												
Nb	ppm	0.11	20	15.7	12.8	13.2	12.7	16.2	17.3	53.6			16	12.6
Nd	ppm		52.5	36.6	36	11.6	33.9	31	38.8	44.1			45	31
Ni	ppm	9.2	6	4	4	3	4	1	7	198			15	5
P Pb	ppm	680 56.9	29	11	16	5	22	8	23	4			11	14
ro Pr	ppm ppm	50.9	15.25	9.35	9.58	3.34	8.99	9.23	11.4	4 10.9			12.6	8.22
Rb	ppm	1	207	9.55	76.8	133.5	102	9.25	172.5	60.8			12.0	314
Re	ppm	0.001	0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	0.025			0.06	< 0.001
s	%	0.09	0.02	0.03	0.03	0.08	0.04	0.18	0.03	1.89			0.29	2.12
Sb	ppm	137.5	0.15	4.49	0.6	1.22	0.72	0.32	0.12	0.92			1	1.97
Sc	ppm	1.1	7	8	10	5	10	3	6	25			5	10
Se	ppm	1.3	0.2	0.2	<0.2	0.2	<0.2	0.6	<0.2	2.2			1.7	1.4
Sm	ppm	1.2	9.01	7	6.57	1.86	6.04	5.33	6.66	8.75			7.88	5.42
Sn Sr	ppm	1.2 74	2 826	4 785	2 628	3 82.7	2 916	2 87.6	2 514	2 70.7			2 380	2 407
Sr Ta	ppm ppm	/**	1.2	1.1	0.7	0.8	0.7	87.0	1.3	3.3			1	407
Tb	ppm		0.91	0.67	0.67	0.21	0.61	0.45	0.59	1.05			0.73	0.53
Te	ppm	0.46	< 0.01	0.31	<0.01	0.33	0.01	0.02	< 0.01	<0.01			<0.01	0.02
Th	ppm	4.6	25.9	23.1	12.15	7.86	12.5	13.2	27.7	5.47			21.2	12.05
Ti	%	< 0.005												
TI	ppm	1.77	0.08	0.14	0.06	0.26	0.06	0.33	0.28	0.31			0.35	0.31
Tm	ppm		0.39	0.28	0.28	0.24	0.27	0.25	0.25	0.34			0.3	0.29
U	ppm	2.65	6.25	4.14	2.72	3.67	2.77	3.56	5.71	9.59			4.96	2.83
V	ppm	48	80	89	110	73	107	13	67	290			34	118
W	ppm	2.31	4	4	1	2	1	1	1	17			10	4
Y Yb	ppm	14.2	27 2.47	21.1 2.2	19.9 1.84	12.8 1.76	19.5 2	15.6 1.64	18.2 1.77	28.1 2.28			23.9 2.2	17.6 1.87
Zn	ppm ppm	55	83	2.2	1.84	9	90	6	69	177			51	22
	ppm	3	312	238	241	161	244	138	213	275			359	236

 Zr
 ppm
 3
 312
 238
 241
 161
 244
 138
 213

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are sume as map units in geologic map (Plat 1).
 Samples "KS###" collected by Gahriel Alians. Samples "KC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.
 VMole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Table A1. Multi-element	accord amistry of	f unaltared and	altored rooks

Sample UTM	ID East	KS143 536833	KS144 540610	КТС 002 539799	KTC 005 540182	KTC 007 540023	KTC 011 539715	KTC 012 539756	KTC 013 539788	KTC 015 539907	КТС 016 540198	KTC 017 540147	KTC 019 539910	621 5404
NAD27	North	44 18073	44 14578	4416596	4416769	4416663	44 16227	44 16273	44 16292	44 16194	44 16435	44 16431	44 15825	4416
Unit		Ovb	Та	Tda	Tmd	Та	Tvc	Tda	Tda	Tda	Та	Tda	Та	Tda
Comment/Alt Whole-ro		KTC 345		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Ore chemi		KIC 545		1	1	1	1	1	1	1	1	1	1	1
Thin Sect		Y	Y											
SiO ₂	%			66.80	58.96	60.87	75.64	71.42	71.29	67.80	63.28	64.53	62.29	67.5
Al ₂ O ₃	%			17.09	15.78	16.46	14.10	14.84	15.80	17.13	17.34	18.15	16.88	17.3
FeO*	%			1.43	6.87	5.98	2.08	3.07	3.08	3.21	5.32	3.65	5.00	2.5
CaO MgO	% %			4.21 1.56	6.48 3.53	5.36 3.40	0.41 0.46	3.00 1.19	1.55 0.95	2.56 0.79	3.46 2.47	4.50 1.08	5.39 2.70	2.9 0.8
Na ₂ O	%			3.66	2.97	3.11	2.12	2.52	2.78	3.10	3.63	3.69	3.14	3.2
K ₂ O	%			4.38	3.91	3.17	4.29	3.03	3.66	4.48	2.97	3.35	3.15	4.2
Cr ₂ O ₃	%			0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
TiO ₂	%			0.40	0.86	0.85	0.23	0.43	0.42	0.43	0.81	0.53	0.83	0.4
MnO	%			0.02	0.08	0.23	0.02	0.08	0.06	0.07	0.13	0.06	0.13	0.0
P2Os SrO	%			0.13 0.07	0.31 0.07	0.27 0.09	0.10 0.05	0.18 0.06	0.18 0.05	0.14 0.06	0.28 0.08	0.21 0.08	0.29 0.05	0.1
BaO	%			0.24	0.17	0.09	0.49	0.18	0.17	0.22	0.03	0.03	0.15	0.0
LOI	,,,			0.23	0.16	0.19	0.47	0.17	0.16	0.21	0.21	0.17	0.14	0.4
Ag	ppm			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.2
Al	%													
As	ppm			7	13	7	11	6	13	2.5	23	2.5	2.5	11
Au	ppm													
B Ba	ppm ppm			2250	1550	1840	4740	1665	1540	2080	2020	1650	1305	403
Ве	ppm			2230	1550	1040		1005	1.540	2000	2020	1000	1505	403
Bi	ppm													
С	%													
Ca	%													
Cd	ppm			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.2
Ce Co	ppm ppm			112 1	82.8 11	74.4 10	85.2 2	75.5 5	72.2 4	103 5	82.2 10	96.2 7	75.8 11	10 4
Cr	ppm			10	20	20	10	10	10	10	20	10	20	10
Cs	ppm			4.25	1.8	3.03	4.79	3.72	3.29	6.27	1.41	1.94	6.83	1.3
Cu	ppm			7	3	4	4	4	4	5	4	6	9	5
Dy	ppm			3.29	4.29	3.5	2.86	3.03	2.72	3.89	3.71	3.92	3.28	3.7
Er	ppm			1.82	2.4	2.05	1.6	1.64	1.63	2.19	2.02	1.98	1.98	2.1
Eu Fe	ppm			1.58	1.82	1.69	1.03	1.27	1.27	1.61	1.59	1.86	1.38	1.5
Ga	% ppm			21.4	20.4	19.2	15	18.7	19.1	22.9	20.6	23.6	21	21.
Gd	ppm			5.19	5.48	4.62	4.02	3.84	3.98	5.26	4.9	5.35	4.48	5.2
Ge	ppm													
Hf	ppm			7.7	5.6	4.6	4.7	4.8	4.8	7.9	5.5	7.5	5.2	7.
Hg	ppm													
Ho	ppm			0.58	0.82	0.71	0.57	0.59	0.52	0.79	0.7	0.78	0.65	0.6
In K	ppm %													
La	ppm			60.5	42.8	39	45	39.2	38.8	54.2	45	50.9	38.5	56.
Li	ppm			10	20	40	20	10	10	20	30	10	20	10
Lu	ppm			0.25	0.34	0.29	0.26	0.26	0.24	0.34	0.3	0.3	0.3	0.2
Mg	%													
Mn	ppm					2	0.5			2				
Mo	ppm %			1	2	3	0.5	1	1	2	1	1	1	3
Na Nb	>% ppm			13.9	13.6	10.8	14.7	12	11.7	14.6	11.6	14.1	11.5	14
Nd	ppm			45.2	37	32.1	33.1	30.8	30.1	41.6	36.2	39.7	32.2	43.
Ni	ppm			4	2	5	2	1	4	2	7	2	7	2
Р	ppm													
Pb	ppm			12	7	24	24	18	16	18	14	19	11	15
Pr Rb	ppm			12.4 91	9.7 95	8.38 68.7	9.16 119	8.22 85.9	7.95 99.3	11.2 135.5	9.32 72.4	10.6 103.5	8.48 87	11. 119
Re	ppm ppm			71	75	00./	119	05.9	19.3		/2.4	105.5	07	119
s	%													
Sb	ppm													
Sc	ppm			4	10	12	4	5	5	4	10	5	10	4
Se	ppm			7.01	7 61	6.02	6.04	5 7 7	5.02	7 01	<i>L L</i>	7 4 4	6.02	
Sm Sn	ppm ppm			7.91 2	7.61 5	6.03 2	6.04 2	5.73 1	5.03 2	7.81 2	6.6 2	7.44 2	6.02 1	7.5
Sr	ppm			605	619	650	433	524	461	571	720	721	487	60
Ta	ppm			0.9	0.9	0.6	1	0.8	0.7	1	1.1	0.9	0.7	1
Tb	ppm			0.66	0.86	0.67	0.56	0.54	0.55	0.81	0.69	0.76	0.6	0.7
Te	ppm													
Th	ppm			18.45	13.55	9.58	14.05	11.45	10.6	19.1	11.75	16.05	10.25	18.
Ti Ti	%			5	5	5	5	5	5	5	5	5	5	5
Tl Tm	ppm			5 0.26	5 0.35	5 0.31	5 0.26	5 0.24	5 0.22	5 0.35	5 0.29	5 0.32	5 0.27	5 0.2
U	ppm ppm			3.65	3.25	2.17	3.39	2.79	2.58	3.93	2.51	3.29	2.39	3.6
v	ppm			19	96	124	8	33	30	26	107	44	113	26
W	ppm			1	1	1	2	1	1	2	2	2	1	2
Y	ppm			16.7	22.6	18.6	15.6	15.7	14.6	21.3	20.4	20.8	19	21
Yb	ppm			1.75	2.36	1.82	1.67	1.67	1.59	2.07	2.07	2.17	1.87	2.0
Zn Zr	ppm			24 328	38	154 194	49	73 199	59 203	64 342	77	74	77	65
	ppm				238 hydrous. Abbr		176				226	325	212	33:

	Table A1. Multi-element	t geochemistr	y of unaltered	and altered	rocks.
-		KTC	KTC	KTC	K

UTM NAD27	e ID East North	KTC 023 540554 4416377	KTC 024 540595 4416574	KTC 028 540931 4415808	KTC 039 540285 4415946	KTC 040 540449 4415814	KTC 042 540500 4415302	KTC 043 540351 4415141	KTC 046 540205 4415325	KTC 049 540192 4415681	KTC 051 540807 4417420	KTC 052 540655 4417504	KTC 054 540653 4414911	KTC 055 54070 441479
Uni	t	44 163// Ta	44 165 /4 Tda	44 15808 Tv c	44 15946 Ta	44 15814 Tda	44 15302 Ta	44 15141 Ta	44 15325 Ta	44 15681 Ta	441/420 Tda	441/504 Tvc	44 1491 1 Ta	44 1479 Ta
omment/A Whole-r Ore chen	rock ¹	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Thin Se	ction													
SiO ₂	%	63.48 16.51	74.14 17.72	78.59 13.39	65.09 15.39	66.05 18.01	64.42 17.60	63.37 17.14	62.60 17.12	62.78 16.72	69.95 16.33	77.71 13.48	62.76 17.36	61.42 17.86
Al ₂ O ₃ FeO*	%	5.30	0.71	0.71	6.68	3.36	5.10	4.84	5.17	5.37	3.73	1.11	5.26	5.40
CaO	%	5.14	0.14	0.31	3.45	3.41	4.25	4.93	5.46	4.54	1.35	0.12	5.07	5.40
MgO	%	2.28	1.40	0.39	3.38	0.89	0.80	1.96	2.63	2.44	1.61	0.39	2.28	2.13
Na ₂ O	%	2.83	0.14	1.64	1.80	3.31	3.42	3.39	3.44	3.75	1.89	0.19	3.32	3.41
K2O Cr2O3	% %	2.86 0.01	4.84 0.01	4.55 0.01	2.83 0.01	3.96 0.01	3.05 0.01	2.98 0.01	2.16 0.01	3.02 0.01	4.09 0.01	6.52 0.01	2.54 0.01	2.78 0.01
TiO ₂	%	0.92	0.53	0.12	0.75	0.51	0.80	0.83	0.81	0.80	0.46	0.15	0.80	0.89
MnO	%	0.10	0.01	0.02	0.19	0.04	0.05	0.06	0.10	0.10	0.16	0.03	0.09	0.09
P ₂ O ₅	%	0.33	0.14	0.06	0.25	0.20	0.29	0.26	0.26	0.27	0.19	0.03	0.29	0.35
SrO BaO	% %	0.08 0.16	0.03 0.19	0.03 0.17	0.05 0.14	0.07 0.19	0.07 0.14	0.07 0.14	0.08 0.15	0.07 0.13	0.05 0.18	0.03 0.22	0.08 0.14	0.08 0.17
LOI	70	0.16	0.19	0.16	6.75	3.05	2.57	2.05	2.25	2.28	4.35	2.13	2.57	2.06
Ag	ppm	0.25	0.25	0.25	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Al	%		10	1.5	20	-		,		,	22	40		
As Au	ppm ppm	2.5	18	15	20	7	<5	6	<5	6	23	48	<5	<5
B	ppm													
Ba	ppm	1425	1765	1480	1160	1640	1230	1185	1320	1180	1540	1985	1190	1455
Be Bi	ppm													
С	ppm %													
Ca	%													
Cd	ppm	0.25	0.25	0.25	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ce	ppm	95.2 11	115 0.5	77.1 0.5	63.5 11	95.7 5	74.8 8	76 9	76 11	75 12	77.6 3	91.3 1	77.1 9	82.7 9
Co Cr	ppm ppm	10	10	5	10	10	20	20	20	20	3	1	10	10
Cs	ppm	0.66	1.02	2.6	0.35	1.31	1.22	1.35	8.65	0.69	4.63	4.31	1.65	1.75
Cu	ppm	9	1	3	9	9	6	8	9	9	4	6	10	11
Dy Er	ppm	3.81	3.2	2.46 1.47	2.93 1.72	3.97	3.93	3.24	3.98 1.94	3.85 2.02	3.6 1.78	2.78	3.64	5.61
Er Eu	ppm ppm	2.07 1.59	1.76 1.73	0.7	1.12	2.15 1.72	2.25 1.35	1.92 1.37	1.94	1.39	1.78	1.51 1.06	1.94 1.38	2.99 1.81
Fe	%	1.57	1.75	0.7	1.1.5	1.72	1.55	1107	1.12	1.59	1.50	1.00	1.50	1.01
Ga	ppm	21.8	24.1	16.4	17.1	23.3	20.9	20.5	21.5	20.5	20.2	16.3	20.7	21.6
Gd	ppm	5.18	5.19	3.08	3.66	5.22	4.48	4.74	4.44	4.29	4.99	3.61	4.58	6.92
Ge Hf	ppm	6.8	8.5	4.2	5	8.6	5.7	5.8	5.5	5.4	5.5	4.7	5.6	6.1
Hg	ppm ppm	0.8	0.5	4.2	5	8.0	5.7	5.8	5.5	5.4	5.5	4.7	5.0	0.1
Но	ppm	0.72	0.61	0.48	0.6	0.68	0.74	0.71	0.66	0.66	0.63	0.53	0.66	1.08
In	ppm													
K La	% ppm	49.1	61.1	44.1	33.9	53.1	40.4	40.9	40.4	39.6	53.9	47.2	41.1	54.5
Li	ppm	5	5	20	10	10	10	10	10	10	20	10	10	10
Lu	ppm	0.27	0.31	0.26	0.23	0.33	0.31	0.24	0.3	0.3	0.24	0.23	0.26	0.4
Mg Mn	%													
Mo	ppm ppm	2	1	1	1	2	1	1	2	1	1	1	1	2
Na	%	-				-			-					-
Nb	ppm	15.5	16.3	15.9	10	13.6	11.9	11.6	11.4	11.5	12.9	14.5	11.8	12.3
Nd Ni	ppm	41	46.2 3	29.1 3	29.2 2	42.8 2	34.3 4	34.6 3	34.4 4	33.9 4	43.5	38.3 1	35.1 5	50.5 2
P	ppm ppm	-	5	5	2	2	4	5	4	4		1	5	2
Pb	ppm	19	7	4	9	19	13	12	15	15	13	20	19	14
Pr	ppm	10.65	12.1	8.38	7.5	11.35	9.12	9.09	9.11	8.76	11.8	10.35	9.02	12.7
Rb Re	ppm ppm	68.7	157	132.5	61.3	114.5	86.3	83.6	146	85.1	119.5	236	85.7	75.7
s	%													
Sb	ppm	l .												
Sc	ppm	8	4	3	10	5	9	11	11	12	5	3	11	11
Se Sm	ppm ppm	7	7.86	4.18	5.34	7.74	6.3	6.45	6.36	6.38	7.34	6.12	6.65	8.83
Sn	ppm	2	5	2	2	2	1	2	2	2	3	2	2	2
Sr	ppm	673	211	224	388	588	599	618	689	606	408	203	631	659
Ta Tb	ppm	1 0.75	1.1 0.65	1.1 0.43	0.6 0.56	0.9 0.73	0.8 0.6	0.8 0.62	0.7 0.7	0.7 0.64	0.9 0.67	1	0.7 0.62	0.8 0.99
Te	ppm ppm	0.75	0.05	0.45	0.30	0.75	0.0	0.02	0.7	0.04	0.0/	0.55	0.02	0.99
Th	ppm	15.3	18.4	14.55	10.1	16.85	12.2	11.5	11.7	11.55	12.75	15.55	12.2	11.45
Ti	%			-										
Tl Tm	ppm	5 0.3	5 0.29	5 0.24	<10 0.29	<10 0.26	<10 0.31	10	<10 0.27	<10 0.31	10 0.26	10 0.24	<10 0.31	<10 0.43
U	ppm ppm	0.3 3.11	0.29 3.63	0.24 3.52	0.29 2.11	0.26 3.25	0.31 2.66	0.28 2.66	2.62	0.31 2.49	0.26 3.06	0.24 3.35	2.43	0.43 2.54
v	ppm	95	37	9	103	38	85	121	118	121	38		93	114
W	ppm	2	2	2	<1	1	1	1	1	1	4	1	1	1
Y	ppm	22	18.5	15	16	20.4	20.4	19.7	19.3	18.9	19.6	14.5	18.7	29.3
Yb Zn	ppm ppm	2.02 90	2.13 5	1.7 12	1.62 173	2.11 76	1.95 75	2 82	1.72 89	1.94 85	1.85 73	1.5 51	1.83 89	2.67 100
Zr	ppm	285	369	148	194	334	234	228	219	217	232	158	221	242

	Table A1. Multi-element	t geochemistr	y of unaltered	and altered	rocks.
-		KTC	KTC	KTC	K

Sampl UTM	East	KTC 224 537245	КТС 227 537373	KTC 234 537458	KTC 238 536048	KTC 240 536048	KTC 247 538067	KTC 265 538609	KTC 268 537665	KTC 269 538363	KTC 281 539086	KTC 282 539024	KTC 293 539822	KTC 297 53900
NAD27 Uni	North it	44 16123 Tgd	44 15648 Ovb	44 15971 Ovb	44 16209 Tg d	44 16209 Tg d	44 20595 Ta	44 19431 Twp	44 19132 Twq	44 19095 Twd	44 18591 Twd	44 18501 Twd	44 18326 Ta	44 1807 Twd
omment/ Whole-	Alteration -rock1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Ore che													Y	
Thin Se SiO ₂	ection %	Y 63.03	Y 51.01	Y 44.26	Y 62.38	Y 60.50	Y 70.56	Y 64.71	Y 68.05	Y 60.05	Y 61.12	Y 63.93	Y 70.89	Y 64.63
Al ₂ O ₃	%	17.01	16.64	16.31	17.50	16.90	16.08	19.38	15.50	16.19	16.88	16.09	16.72	16.44
FeO*	%	5.30	10.82	12.85	5.46	6.04	7.79	5.19	3.36	3.29	6.18	4.30	2.72	1.49
CaO MgO	%	4.18 2.45	5.21 5.13	8.89 5.39	4.70 2.17	5.89 3.01	0.39 0.60	8.71 0.22	3.25 1.64	8.35 2.71	5.60 2.43	5.21 1.98	0.16 0.70	6.93 1.44
Na ₂ O	%	3.40	6.22	2.25	3.51	3.46	0.11	0.01	3.14	4.31	3.18	2.63	0.11	2.83
K2O Cr2O3	%	3.10 0.01	0.35 0.01	3.96 0.01	2.85 0.01	2.66 0.01	2.98 0.01	0.07 0.01	4.06 0.01	3.50 0.01	2.92 0.01	4.45 0.01	7.07 0.01	4.83 0.01
TiO ₂	%	0.88	3.31	4.48	0.84	0.89	0.65	1.11	0.59	0.98	0.99	0.71	0.85	0.73
MnO	%	0.07	0.17	0.22	0.03	0.10	0.01	0.05	0.03	0.10	0.12	0.06	0.01	0.04
P2O5 SrO	%	0.36 0.07	0.89 0.09	0.96 0.13	0.33 0.08	0.32 0.08	0.47 0.03	0.41 0.01	0.18 0.06	0.29 0.10	0.35 0.08	0.32 0.08	0.14 0.02	0.31 0.07
BaO	%	0.15	0.15	0.30	0.13	0.13	0.33	0.14	0.14	0.13	0.14	0.24	0.62	0.24
LOI		2.25	4.98	6.51	1.95	4.46	10.9	12.3	1.34	1.13	0.41	2.36	4.23	2.46
Ag Al	ppm %	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
As	ppm	34	<5	5	<5	<5	90	189	22	8	<5	9	2150	8
Au B	ppm												0.006	
Ba	ppm ppm	1340	1350	2480	1195	1165	2580	1025	1245	1140	1280	2140	5240	2060
Be	ppm													
Bi C	ppm %													
Ca	%													
Cd Ce	ppm	0.6 81.9	<0.5 122.5	<0.5 137.5	<0.5 80.1	<0.5 74.2	<0.5 73.6	<0.5 76.9	<0.5 100.5	<0.5 89.4	<0.5 84.4	<0.5 84.3	<0.5 76.2	<0.5 74
Co	ppm ppm	9	28	39	9	12	1	14	9	10	9	8	70.2	3
Cr	ppm	20	70	10	10	30	20	10	30	20	20	10	10	10
Cs Cu	ppm ppm	4.76 13	1.9 23	5 122	6.34 6	6.01 9	2.05 7	1.12 20	4.21 6	1.8 16	2.82 7	5.03 17	7.63 47	3.22 3
Dy	ppm	4.05	6.7	5.95	3.53	4.01	1.23	3.78	3.1	3.79	4.38	3.36	2.83	3.51
Er	ppm	2.05	3.06	2.73	1.88	1.97	0.79	1.92	1.5	2.09	2.43	1.96	1.64	1.9
Eu Fe	ppm %	1.56	3.23	3.35	1.64	1.59	1.28	1.34	1.3	1.55	1.64	1.56	1.06	1.17
Ga	ppm	21	23.6	22	21.5	21.1	19.3	18.7	21.6	20	30.6	29.1	21.5	19.3
Gd Ge	ppm	5.58	9.33	9.59	5.04	5.33	2.9	4.82	4.14	5.46	5.62	4.29	3.46	4.57
Hf	ppm ppm	6.1	8.5	8.3	5.8	5.4	4.2	5.3	6	6.8	6	5.9	5.5	5.1
Hg	ppm													
Ho In	ppm ppm	0.79	1.26	1.12	0.73	0.82	0.28	0.74	0.61	0.73	0.94	0.67	0.57	0.7
К	%													
La Li	ppm	42 30	60.1 40	67.4 40	41.8 30	37.8 10	37.3 <10	38.1 30	54 10	46.1 10	42.7 10	46.3 20	42.1 10	36.6 10
Lu	ppm ppm	0.25	0.3	0.3	0.25	0.26	0.2	0.32	0.27	0.28	0.37	0.29	0.32	0.27
Mg	%													
Mn Mo	ppm ppm	3	1	2	1	2	2	6	1	1	3	3	4	5
Na	%	5		-		-	-	0			5	5		5
Nb	ppm	13.2	58.2	82.1	13.5	11	8.8	14	16.2	15.8	13.9	14.4	12.6	14.9
Nd Ni	ppm ppm	36.3 7	58.7 39	64.4 54	35.1 4	34.9 9	32.8 2	34.2 4	36.6 8	36.9 8	39.4 2	36.6 1	29.8 6	32.2 25
Р	ppm													
Pb Pr	ppm ppm	6 9.67	6 14.9	5 16.55	10 9.34	12 8.86	9 8.44	11 9.4	12 10.75	12 10.25	16 9.92	9 9.63	42 8.36	12 8.95
Rb	ppm	96.7	7.8	80.4	101	80.8	49.2	2.7	137.5	105.5	91	143.5	256	128.5
Re S	ppm %													
Sb	ppm													
Sc	ppm	10	16	18	8	13	11	9	7	9	13	7	12	7
Se Sm	ppm ppm	6.53	10.7	10.75	6.37	6.35	6.5	6.06	5.82	6.15	7.01	6.15	5.52	5.83
Sn	ppm	2	3	2	2	1	1	2	3	1	2	1	1	1
Sr Te	ppm	623	724	1050	661	713	265	39.4	496	833	676	753	176.5	624
Ta Tb	ppm ppm	0.8 0.74	3.7 1.22	5.7 1.24	0.9 0.66	0.7 0.77	0.5	0.8 0.63	1.1 0.59	1.1 0.7	1.1 0.88	1 0.67	0.6 0.48	0.9 0.6
Te	ppm													
Th Ti	ppm %	13.35	7.58	7.42	11.5	11	7.33	11.1	21	14.65	14.15	13.9	11.2	15.45
TI	>% ppm	<10	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10	<10
Tm	ppm	0.25	0.36	0.35	0.25	0.32	0.13	0.28	0.26	0.32	0.37	0.26	0.26	0.27
U V	ppm ppm	3.26 116	1.87 237	1.95 337	2.89 80	2.4 142	2.01 136	3.63 196	3.4 76	3.06 144	2.62 178	2.93 79	2.74 107	4.07 114
W	ppm	2	1	1	2	1	7	29	1	4	1	4	5	2
Y Yb	ppm	22 2.02	31.3 2.41	29.4 2.1	19.8 1.8	22.3 2.05	7.2 1.16	19.1 1.92	16.3 1.5	21.2 1.95	24.6 2.4	19.7	14.2 2.05	19
Yb Zn	ppm ppm	2.02 83	2.41	2.1 114	1.8 36	2.05 92	1.16	1.92 32	1.5	1.95 37	2.4	1.77 30	2.05	1.77 37
Zr	ppm	229	349	343	243	209	170	214	237	274	214	232	222	195

Table A1	Multi alamont	anophomie tray	of unaltered and	altored rook

Sample I UTM NAD27 Unit	D East North	KTC 307 538354 4416849 Ovb	KTC 311 541498 4416978 Tvc	KTC 312 540890 4416922 Tda	KTC 313 541050 4416906	KTC 318 540371 4416312 Tda	KTC 319 540221 4415878 Tda	KTC 337 536949 4418099 Twd	KTC 338 536935 44 18343 Tvc	KTC 339 536892 4418236 Tta	KTC 344 536752 4418139 Tta	KTC 345 536842 4418067 Ovb	KTC 348 536658 4418684 Tvc	KT 0 350 5366 44 186 Ovt
Comment/Alte	ration				Tmp						Ita			
Whole-roc		Y	Y	Y	Y	Y	Y	Υ	Y	Y	Υ	Y	Y	Y
Ore chemis Thin Section		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
SiO ₂	%	50.84	76.71	67.26	74.39	65.81	65.39	59.96	75.91	57.37	53.64	45.72	78.25	45.1
Al ₂ O ₃	%	17.46	14.11	17.43	14.66	17.97	18.09	18.04	14.54	17.89	18.97	18.06	13.98	18.3
FeO* CaO	% %	8.61 7.68	0.32 0.29	2.97 3.11	1.08 1.01	3.55 3.28	3.58 3.66	5.29 3.98	1.65 0.20	6.91 0.92	9.26 1.41	12.50 7.28	1.61 0.30	12.5 7.16
MgO	%	4.21	0.51	0.75	0.26	1.29	1.13	2.43	0.32	2.68	4.94	5.94	0.50	5.88
Na ₂ O	%	3.62	2.05	3.37	2.85	3.36	3.41	4.86	0.13	0.21	0.21	4.47	0.12	4.6
K2O Cr2O3	%	2.67 0.01	5.48 0.01	4.24 0.01	5.31 0.01	3.71 0.01	3.58 0.01	3.70 0.01	6.86 0.01	11.26 0.01	9.44 0.01	0.66 0.01	4.84 0.01	0.69
TiO ₂	%	3.45	0.15	0.42	0.03	0.53	0.54	0.88	0.11	1.13	1.23	3.88	0.14	3.9
MnO	%	0.07	0.03	0.04	0.16	0.06	0.07	0.04	0.03	0.09	0.09	0.14	0.03	0.1
P2O5 SrO	% %	1.18 0.05	0.03 0.04	0.14 0.06	0.05 0.03	0.20 0.07	0.21 0.08	0.55 0.10	0.05 0.01	0.46 0.09	0.43 0.02	1.03 0.13	0.04 0.01	1.0
BaO	%	0.14	0.27	0.19	0.16	0.17	0.25	0.16	0.16	0.97	0.36	0.18	0.15	0.2
LOI		3.73	2.79	2.34	1.69	4.11	3.18	2.34	2.7	4.71	6.62	9.86	3.32	9.8
Ag Al	ppm %	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<0.
As	ppm	93	<5	<5	14	19	<5	<5	52	92	26	7	12	9
Au	ppm													
B Ba	ppm ppm	1110	2330	1780	1355	1530	2150	1265	1430	8000	2960	1495	1305	157
Be	ppm													
Bi C	ppm %													
Ca	%													
Cd	ppm	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	0.8
Ce Co	ppm ppm	134.5 17	50.2 2	103 4	22.3 1	91.6 5	86.1 5	95.6 11	57.5 1	98 10	63.6 18	138 28	32.3	144 29
Cr	ppm	17	10	4	20	10	10	11	I	10	20	70		70
Cs	ppm	2.27	2.51	1.81	2.51	3.26	3.31	4.86	2.37	6.03	1.86	1.79	2.43	1.8
Cu Dy	ppm	25 7.18	2 2.02	3 3.74	1 3.41	5 3.78	4 3.54	7 3.04	2 2.85	26 6.82	10 5.02	39 5.95	2 1.63	39 6
Er	ppm ppm	3.43	1.11	1.88	3.64	1.98	1.86	1.28	1.75	3.12	2.95	2.69	1.05	2.1
Eu	ppm	3.29	0.65	1.5	0.49	1.55	1.51	1.54	0.83	2.03	1.42	3.1	0.27	3.0
Fe Ga	% ppm	21.4	16.9	21.4	23.5	21.9	21.6	22.1	20.6	15.4	20.1	20.4	18.4	21.
Gd	ppm	9.23	2.56	4.92	1.89	4.96	4.7	5.26	3.27	8.56	5.45	7.92	1.19	8.1
Ge	ppm						-							
Hf Hg	ppm ppm	6.7	4.8	8.2	1.4	7.2	7	5.3	3.9	5.2	4.5	8.2	4.2	8.2
Но	ppm	1.35	0.4	0.7	0.89	0.69	0.68	0.52	0.56	1.25	1.03	1.07	0.38	1.0
In K	ppm %													
La	ppm	65.5	29.6	54.6	11.7	48.4	46.1	49.4	37.5	53.7	31.3	71.3	22.4	72.
Li	ppm	30	10	10	<10	10	10	20	20	30	20	60	10	60
Lu Mg	ppm %	0.39	0.21	0.31	0.84	0.27	0.27	0.15	0.26	0.38	0.44	0.35	0.23	0.3
Mn	ppm													
Mo	ppm	1	<1	2	1	2	2	<1	<1	11	3	3	1	3
Na Nb	% ppm	94.4	14.5	15.3	2.9	13.9	13.4	13.4	14	11.8	10.9	94.4	18.3	95.
Nd	ppm	57.5	23.1	39.8	8.6	36.9	35.1	40	27.8	51.9	32.9	60.2	8.3	61.
Ni P	ppm	8	2					6	2	7	8	39		40
Pb	ppm ppm		6	17	23	11	14	10	6	10	9	18	30	18
Pr	ppm	15.1	6.98	11.4	2.51	10.5	9.91	11.3	8.15	13.55	8.37	16.05	2.84	16.
Rb Re	ppm ppm	84.1	154	120.5	151	95.4	104	134.5	198	347	206	17.6	155.5	18.
s	%													
Sb	ppm	0	2	4	1	4			2		10	16	2	1.5
Sc Se	ppm ppm	9	2	4	1	4	5	5	3	6	19	16	3	15
Sm	ppm	10.9	3.91	7.11	2.2	6.59	6.18	7.18	4.57	10.2	6.78	10.35	1.41	10.6
Sn Sr	ppm	3 403	2 331	2 549	1 266	2 578	2 642	5 855	2 82.7	1 768	1 201	2 940	2 129.5	2 96
Ta	ppm ppm	5.4	1	0.9	200	0.8	0.8	0.7	1	0.6	0.5	5.9	129.5	90
Tb	ppm	1.29	0.36	0.65	0.4	0.7	0.66	0.64	0.51	1.25	0.83	1.11	0.23	1.0
Te Th	ppm ppm	7.48	15.25	18.15	3.85	15.15	14.3	11.65	14.05	7.84	7.73	8.26	12	8.3
Ti	%	,			5.05	10.10				,		0.20	. 2	0.5
TI	ppm	<10	<10	<10	<10	<10	<10	<10	<10	10	<10	<10	<10	<1
Tm U	ppm ppm	0.45 1.92	0.2 3.03	0.29 3.51	0.7 5.71	0.27 3.07	0.27 2.91	0.18 2.39	0.24 3.9	0.41 7.49	0.44 4.31	0.38 3.16	0.22 3.41	0.4
v	ppm	168	2.02	28	2.1.4	45	50	117	6	171	225	237	11	24
W	ppm	15	1	1	<1	1	1	2	20	25	18	4	51	4
Y Yb	ppm ppm	32.2 2.68	11 1.36	19.5 1.94	25.4 5.37	19.9 1.84	19.2 1.84	14.9 1.02	16.9 1.73	34 2.54	28.5 2.86	27.9 2.37	11.2 1.48	28. 2.3
Zn	ppm	47	12	148	17	51	76	31	55	80	89	151	13	15
Zr	ppm	310	169	327	32	306	294	232	134	219	181	397	140	40

Table A1	Multi_element	geochemistry	of unaltered and	altered rocks

Sample UTM NAD27 Unit	ID East North	KTC 351 536931 4418540 Tvc	KTC 352 536936 4418499 Tvc	KTC 353 536287 4418539 Tta	KTC 357 537242 4418874 Twq	KTC 359 537301 4418786 Twq	KTC 361 537237 4418763 Twq	KTC 365 537314 4418906 Tmp	KTC 370 540556 4416763 Tmp	KTC 371 540560 4416757 Tmd	KTC 372 540675 4417021 Tmd	KTC 375 540167 4416898 Twp	KTC 377 540326 4416650 Tmd	KT 0 382 5363 44160 Tgd
Comment/Alt Whole-ro		Y	Y	Y	Y.	Y.	Ү	Y	Y.	Y	Y	Y	Y	Y
Ore chemi	stry													
Thin Sect	ion %	Y	Y	Y 54.90	Y 68.54	Y	Y	Y 78.83	Y 75.04	Y	Y 62.49	Y	Y 61.47	Y 59.8
SiO ₂ Al ₂ O ₃	%	79.86 10.43	77.58 12.62	19.03	16.06	68.07 16.10	67.63 15.35	11.32	75.04 14.53	61.11 16.48	15.75	60.67 16.72	16.23	59.8 17.5
FeO*	%	1.84	1.02	7.89	1.07	0.94	3.29	0.86	0.78	5.52	5.33	5.91	5.61	2.10
CaO MgO	% %	0.39 0.36	0.34 0.45	1.27 5.68	5.52 1.66	5.32 0.93	3.15 1.50	0.31 0.17	0.75 0.27	5.67 3.02	4.93 2.68	4.16 4.01	3.75 3.33	5.55 3.20
Na ₂ O	%	0.14	0.89	0.43	5.37	4.23	3.15	2.61	2.88	2.74	2.80	3.15	3.60	3.44
K2O Cr2O3	% %	6.07 0.01	6.54 0.01	8.30 0.01	0.88 0.01	3.49 0.01	4.95 0.01	5.76 0.00	5.53 0.01	3.79 0.01	4.51 0.01	3.66 0.01	4.32 0.01	6.6 0.0
TiO ₂	%	0.22	0.11	1.46	0.57	0.57	0.57	0.11	0.03	0.98	0.87	1.08	0.95	0.9
MnO P2O5	% %	0.03 0.17	0.03 0.05	0.07 0.42	0.03 0.18	0.02 0.16	0.04 0.17	0.01 0.00	0.06 0.06	0.10 0.34	0.09 0.31	0.10 0.33	0.12 0.34	0.02
SrO	%	0.02	0.03	0.02	0.07	0.06	0.06	0.00	0.03	0.07	0.07	0.06	0.08	0.0
BaO	%	0.45	0.33	0.53	0.03	0.09	0.14	0.01	0.05	0.16	0.16	0.13	0.19	0.3
LOI Ag	ppm	2.47 0.7	3.16 <0.5	7.17 <0.5	2.11 0.25	2.3 0.25	0.92 0.25	0.86 0.5	1.16 0.25	2.69 0.25	1.47 0.25	4.42 0.25	3.97 0.25	2.3
Al	%													
As Au	ppm ppm	85	20	44	8	2.5	2.5	9	2.5	5	2.5	2.5	2.5	13
В	ppm													
Ba Be	ppm ppm	3930	2920	4290	248	751	1185	113.5	469	1390	1460	1020	1565	308
Bi	ppm													
C Ca	% %													
Cd	ppm	<0.5	<0.5	<0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.2
Ce Co	ppm ppm	45.3	47.7 1	71 20	71.6 2	55.6 1	101.5 7	61.7 1	10.8 1	93.6 16	98.8 14	85.9 17	95.7 15	72. 3
Cr	ppm	30	1	30	20	20	20	10	10	60	560	20	60	20
Cs Cu	ppm	9.79 17	10.25	3.86 9	7.22	2.54 2	6 2	4.9 1	0.82	2.85 7	1.99 5	2.19 14	1.47 8	10. 1
Cu Dy	ppm ppm	2.59	2.64	5.2	2.97	3.59	2.91	1.8	1.65	4.31	4.36	3.59	8 4.11	4.3
Er	ppm	1.54	1.48	2.84	1.61	1.94	1.48	1.28	1.74	2.2	2.27	1.88	2.3	2.2
Eu Fe	ppm %	0.65	0.75	1.43	0.98	1.16	1.23	0.13	0.48	1.6	1.61	1.55	1.66	1.5
Ga	ppm	12.2	13.2	20.8	19.5	19.7	19.2	16.3	22.9	20.1	21.2	18.8	19.1	18.
Gd Ge	ppm ppm	2.99	3.23	5.57	4.12	4.47	3.85	1.71	0.99	5.32	5.61	4.75	5.71	5.0
Hf	ppm	3.4	3.7	5.1	6.1	6.1	5.2	5.1	0.9	7.2	7.4	5.6	6.9	5.2
Hg Ho	ppm ppm	0.56	0.51	1.03	0.58	0.7	0.54	0.36	0.43	0.82	0.86	0.69	0.86	0.8
In	ppm	0.50	0.51	1105	0.50	017	0.51	0.50	0.15	0.02	0.00	0.05	0.00	0.0
K La	% ppm	24.6	39	36.4	31.6	25.9	60.1	44.9	6.3	51.1	55.2	47.6	53	40.
Li	ppm	10	10	40	10	10	10	10	5	10	10	30	10	10
Lu Mg	ppm %	0.25	0.2	0.39	0.22	0.27	0.25	0.25	0.43	0.33	0.35	0.29	0.34	0.3
Mn	ppm													
Mo Na	ppm %	2	1	2	0.5	0.5	1	1	0.5	2	2	2	0.5	1
Nb	ppm	12.2	15.3	16.5	19.7	15.9	14.4	12.8	3.5	17.7	18.8	15.2	17.2	11.
Nd Ni	ppm	19.6 3	27.4	32.5 13	34.3 10	33.1 6	40.1 12	17.6 1	4.8 1	41.9 9	44.7 9	37.7 18	42.5 9	34. 6
Р	ppm ppm	5					12		1	,	,	10	,	
Pb Pr	ppm	11 5.59	8 8.1	7 8.53	7 9.11	14 8.11	22 11.65	8 6.34	26 1.38	18 11.5	32 12.1	13 10.3	15 11.8	5 9.1
Pr Rb	ppm ppm	149.5	163	8.53 158.5	30.4	75.5	166.5	331	1.38	11.5	12.1	111.5	130.5	15
Re S	ppm %													
Sb	ppm													
Sc	ppm	4	2	14	5	4	6	0.5	1	11	10	10	11	12
Se Sm	ppm ppm	3.79	4.79	6.37	5.85	6.38	6.53	2.46	0.99	7.46	7.58	6.45	7.85	6.5
Sn Sr	ppm	2 180	2 225	1 165	1 583	1 534	2 486	3 63.3	1 297	2 589	2 612	2 474	2 709	1 60
Sr Ta	ppm ppm	0.8	1	0.9	1.2	1.3	1.1	1.3	0.1	1.1	1.1	4/4	1.1	0.1
Tb Te	ppm	0.46	0.45	0.83	0.58	0.63	0.56	0.29	0.2	0.81	0.81	0.66	0.8	0.7
Th	ppm ppm	10.15	12.75	8.6	25.1	25.3	25.5	52.6	2.14	17.2	19.15	16.45	17.95	11.
Ti	%	~1.0	-10	-10	-	-		÷	-	e	-	÷	-	-
Tl Tm	ppm ppm	<10 0.22	<10 0.19	<10 0.44	5 0.24	5 0.3	5 0.22	5 0.23	5 0.34	5 0.34	5 0.35	5 0.27	5 0.35	5 0.3
U	ppm	7.19	3.13	1.8	4.45	4.17	4.12	8.44	1.27	3.52	3.99	3.59	3.62	2.8
v w	ppm ppm	80 4	5 10	190 29	50 1	48 1	62 1	5 4	2.5 0.5	117 1	112 1	123 1	113 1	12 2
Y	ppm	16.6	14.5	28.8	16.3	19.1	15.7	12.8	12.5	23	23.4	18.8	23.1	22
Yb Zn	ppm ppm	1.49 41	1.46 30	2.71 92	1.49 17	1.84 17	1.57 35	1.75 16	2.67 15	2.17 75	2.21 136	1.75 86	2.11 87	2.1
Zr	ppm	124	123	217	226	228	197	152	21	283	300	218	277	20

Table A1	Multi alamant	good onic tra	of up altanad a	nd altered rocks.
I able AL	. withut-element	geochemistry	or unantereu a	nu antereu rocks.

Sample	D	KTC 202	KTC 200	KTC	KTC								
UTM	East	392 540676	398 540003	400 539972	401 539800	407 540692	412 540558	415 540033	418 539855	419 539884	421 539812	423 539569	426 53947
NAD27	North	44 16959	44 17710	44 17948	4417800	44 17896	44 18224	44 17979	44 17500	44 17366	44 17174	44 17179	44 1723
Unit		Tgd	Trp	Trp	Trp	Tvc	Tvc	Tmd	Trp	Twp	Tmd	Twp	Tmp
Comment/Alt Whole-ro		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Ore chemi		1	1						1				
Thin Sect		Y											
SiO ₂	%	57.05	79.98	79.90	75.71	81.93	81.45	64.25	74.66	70.73	65.49	61.49	75.51
Al ₂ O ₃	%	18.21	12.50	12.94	13.32	13.53	13.20	15.91	13.39	14.14	15.48	16.60	14.11
FeO* CaO	% %	6.27 7.22	0.73 0.17	0.77 0.11	1.58 0.86	0.67 0.11	1.28 0.10	4.74 4.70	2.21 1.35	2.93 2.80	4.88 3.63	6.01 4.29	0.74
MgO	%	3.50	0.33	0.22	0.47	0.31	0.35	2.12	0.89	1.61	2.14	3.23	0.10
Na ₂ O	%	3.66	0.17	0.15	2.71	0.07	0.05	2.72	2.13	2.45	2.75	2.98	3.49
K ₂ O	%	2.40	5.65	5.68	4.94	3.08	3.09	4.17	4.82	4.57	4.15	3.67	4.74
Cr_2O_3	%	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
TiO ₂	%	1.03	0.22	0.09	0.17	0.12	0.12	0.83	0.23	0.40	0.89	1.09	0.05
MnO	% %	0.07 0.38	0.01 0.01	0.01 0.03	0.02 0.07	0.01 0.05	0.02 0.07	0.07 0.28	0.07 0.09	0.08 0.15	0.08 0.31	0.09 0.34	0.04
P2O5 SrO	%	0.38	0.01	0.03	0.07	0.05	0.07	0.28	0.09	0.15	0.06	0.34	0.09
BaO	%	0.11	0.22	0.08	0.12	0.12	0.25	0.14	0.12	0.11	0.14	0.16	0.05
LOI		1.62	2.85	2.65	1.99	3.44	3.44	1.36	3.53	4.63	1.65	5.25	0.82
Ag	ppm	0.25	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Al	%									_	_		-
As	ppm	2.5	10	50	15	2.5	35	9	6	5	7	13	5
Au B	ppm												
Ва	ppm ppm	980	1990	740	1045	980	2300	1320	1075	1010	1265	1350	432
Be	ppm	200	1770	740	1045	200	2500	1520	1075	1010	1205	1550	452
Bi	ppm												
С	%												
Ca	%												
Cd	ppm	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.25	0.25	0.25
Ce Co	ppm	70.6 12	36.5 0.5	35.8 0.5	57.4 1	80.2 0.5	79.3 1	105.5 11	64.5 2	64.1 5	104 12	96.6 17	27.9 0.5
Cr	ppm ppm	30	20	10	10	10	10	50	20	30	50	30	10
Cs	ppm	11.2	2.67	2.91	6.32	2.82	3.68	5.14	3.7	2.78	2.67	1.97	0.83
Cu	ppm	6	6	2	21	1	1	9	7	13	7	16	2
Dy	ppm	3.99	2.08	2.22	2.55	2.41	2.18	4.04	2.7	3.44	4.31	4.06	1.96
Er	ppm	2.05	1.19	1.12	1.4	1.42	1.22	2.09	1.38	1.73	2.08	1.84	1.63
Eu	ppm	1.69	0.55	0.47	0.73	0.73	0.76	1.62	0.77	1.06	1.55	1.7	0.5
Fe Ga	%	21.7	17.3	17.7	17.3	18.5	21.4	22	18.5	18.5	21.5	21.3	28.1
Gd	ppm ppm	4.94	2.44	2.33	3.13	3.07	3.27	5.4	3.42	4.55	5.65	5.49	1.96
Ge	ppm		2	2.00	5.15	5107	5.27	2.1	5.12	1100	5105	5.17	1.90
Hf	ppm	5	4	3.2	3.6	4.1	4.6	8	4	5.1	7.9	5.8	2.3
Hg	ppm												
Но	ppm	0.8	0.42	0.42	0.47	0.52	0.42	0.79	0.5	0.66	0.87	0.78	0.45
In	ppm												
K La	% ppm	38.3	18.8	20.3	31.8	39.3	42.8	55.5	34.6	39.6	55	54.2	14.8
Li	ppm	30	10	10	20	20	20	20	20	20	20	20	14.0
Lu	ppm	0.3	0.22	0.2	0.22	0.25	0.25	0.3	0.24	0.28	0.34	0.29	0.35
Mg	%												
Mn	ppm												
Mo	ppm	5	3	1	2	2	2	2	1	1	1	1	0.5
Na Nb	%	11.4	14.4	12.6	14	15.8	17.4	18.6	15.5	15.8	18.2	16.3	4.5
ND Nd	ppm ppm	34.4	14.4	12.6	23.2	29.4	29.9	43.4	25.8	30.8	18.2 44.6	41.9	4.5
Ni	ppm	9	0.5	14.9	1	0.5	1	8	23.8	3	6	15	1
Р	ppm												
Pb	ppm	11	37	72	26	9	9	17	20	25	23	15	22
Pr	ppm	8.93	4.11	4.22	6.52	8.81	8.5	11.7	7.32	8.27	11.8	11.15	3.14
Rb Re	ppm	99.5	185	219	161.5	122	122.5	157	176	171.5	135.5	121.5	124
S	ppm %	1											
Sb	ppm												
Sc	ppm	11	3	3	3	3	3	10	4	5	10	11	1
Se	ppm							_				_	
Sm	ppm	6.69	3.31	3.08	4.29	4.44	4.98	7.51	4.66	5.58	7.78	7.3	2.42
Sn Sr	ppm	1 820	2 110.5	3 106	3 199.5	2 80.9	1 74	2 589	3 209	5 287	2 554	2 516	1 257
Sr Ta	ppm ppm	820 0.7	1.3	106	199.5	1.1	1.2	1.2	1.3	1.2	554 1.1	1.1	0.2
Tb	ppm	0.7	0.36	0.36	0.43	0.41	0.39	0.72	0.45	0.61	0.78	0.72	0.29
Te	ppm												
Th	ppm	9.53	17.55	16.75	16.9	15.1	15.3	21.3	18.1	17.25	21.2	17.15	4.06
Ti	%												
TI	ppm	5	5	5	5	5	5	5	5	5	5	5	5
Tm U	ppm	0.29 1.9	0.18 4.99	0.16 4.65	0.2 4.29	0.21 4.54	0.23 4.03	0.29 4.02	0.2 5.35	0.26 4.52	0.31 4.09	0.28 3.74	0.26
v	ppm ppm	1.9	4.99	4.65	4.29	2.5	2.5	4.02	22	4.52	4.09	3.74 147	5.54
w	ppm	3	2	2	2	1	2.5	2	2	2	1	2	1
Y	ppm	20.6	12.2	13.1	14.5	13.4	12.9	22.6	15	20.4	23.9	22.5	13.2
Yb	ppm	1.82	1.25	1.21	1.33	1.62	1.48	2.01	1.45	1.7	2.18	1.91	2.2
Zn	ppm	44	15	17	63	16	11	80	59	93	89	86	34
Zr	ppm	199	120	79	103	129	149	305	125	169	304	227	55

 Zn
 ppm
 44
 15
 17
 63
 16
 11
 80
 59

 Zr
 ppm
 199
 120
 79
 103
 129
 149
 305
 125

 Major oxides are reported in weight percent normalized to 100% anylytoxus. Abbreviations are sume as map units in geologic map (Plate 1).
 Samples "KS###" collected by Gabriel Aitaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Cop.
 Vhole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Sample I	D	KTC 427	KTC 429	KTC 437	KTC 438	KTC 439	KTC 440	KTC 441	KTC 446	KTC 448	KTC 45
UTM	East	540682	541095	540611	540542	540187	540062	540083	540188	539994	540292
NAD27	North	4419092	4418868	4419160	4418983	4418604	4418568	4418786	4418937	4418776	441924
Unit Comment/Alte	ration	Tmd	COcb	COcb	Tad	Tad	Tdad	Tad	Tdad	Tad	Td ad
Whole-roo		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Ore chemis		•	•	•	•	•	•	•	•	•	
Thin Secti											
SiO ₂	%	63.10	41.38	49.51	76.53	74.53	69.78	63.54	69.56	66.10	71.33
Al ₂ O ₃	%	15.67	13.08	19.56	18.71	17.96	17.70	17.29	17.34	18.09	17.76
FeO*	%	5.22	6.11	8.04	1.48	1.23	2.65	4.63	2.92	4.78	1.90
CaO	%	4.48	26.16	8.69	0.21	0.30	0.13	5.71	0.33	1.30	0.52
MgO	%	2.97	2.74	5.34	0.37	0.61	0.83	1.98	0.61	2.14	0.49
Na ₂ O	%	3.20	3.53	1.63	0.02	0.06	0.12	0.09	0.09	0.08	2.22
K ₂ O Cr ₂ O ₃	% %	3.91 0.01	1.82 0.03	3.35 0.03	1.66 0.01	3.96 0.01	7.71 0.01	5.35 0.01	8.14 0.01	5.79 0.01	4.94 0.01
TiO ₂	%	0.87	3.58	2.32	0.77	0.79	0.39	0.73	0.38	0.76	0.39
MnO	%	0.07	0.18	0.10	0.01	0.01	0.01	0.09	0.01	0.06	0.03
P_2O_5	%	0.30	0.74	0.32	0.14	0.19	0.13	0.25	0.13	0.28	0.14
SrO	%	0.06	0.05	0.08	0.01	0.01	0.01	0.02	0.01	0.01	0.03
BaO	%	0.14	0.58	1.02	0.09	0.34	0.52	0.31	0.48	0.59	0.24
LOI		2.09	18.2	11.65	6.45	4.29	3.09	8.06	3.05	5.1	3.42
Ag	ppm	0.25	0.25	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Al	%										
As	ppm	2.5	13	7	22	78	17	10	19	33	5
Au	ppm										
B Ba	ppm	1185	4240	8050	859	3060	4670	2690	4290	5230	2280
ва Ве	ppm	1185	4240	8050	839	3060	4670	2690	4290	5250	2280
Bi	ppm ppm										
C	%										
Ca	%										
Cd	ppm	0.25	0.25	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ce	ppm	93.1	68.6	44	82.2	68.8	97	76.3	109.5	82.7	109
Со	ppm	13	57	27		1	1	8	3	9	2
Cr	ppm	60	130	230	10	10		10		10	
Cs	ppm	2.06	1.64	6.2	4.17	8.98	10.25	12.25	21.1	10.4	11.9
Cu	ppm	2	43	57	30	34	3	8	3	2	3
Dy	ppm	3.95	5.02	3.51	3.34	2.08	3.49	3.04	3.81	3.76	4.02
Er En	ppm	2.04 1.55	2.41 2.42	1.69 1.61	1.89 0.99	1.51 1.13	1.93 1.26	1.83 1.31	2.3 1.69	2.04 1.34	2.09 1.38
Eu Fe	ppm %	1.55	2.42	1.01	0.99	1.15	1.20	1.51	1.09	1.54	1.50
Ga	ppm	20.3	15	17.9	20.1	20.3	21	18.6	21.5	20.1	20.8
Gd	ppm	5.36	7.29	4.25	3.77	3.19	4.16	4.11	5.42	4.63	5.14
Ge	ppm	5150	7.27	1.25	5.77	5.1.7			5.12	1105	5.11
Hf	ppm	6.6	5.8	3.4	6	6.2	7.9	5.3	8.2	5.9	8.2
Hg	ppm										
Но	ppm	0.8	0.97	0.64	0.68	0.47	0.65	0.66	0.81	0.73	0.77
In	ppm										
к	%										
La	ppm	48.7	32.3	21.5	44	36.5	49.3	40.6	58.2	43.7	55.5
Li	ppm	20	30	50	60	10	10	20 0.27	10 0.32	20	10
Lu Ma	ppm %	0.31	0.28	0.21	0.29	0.3	0.29	0.27	0.32	0.29	0.3
Mg Mn											
Mo	ppm ppm	1	1	<1	2	2	4	1	4	2	2
Na	%										
Nb	ppm	16.1	43.6	24.6	12.7	13.1	14.4	11.1	14.7	12.5	14.4
Nd	ppm	40.4	37.9	22	30.6	27.2	35.2	30.7	41.7	33.5	40.6
Ni	ppm	5	137	70	5	4	2	2	1	4	2
Р	ppm										
Pb	ppm	10	1	2	6	14	10	6	9	7	17
Pr	ppm	10.6	8.64	5.61	8.92	7.62	10.45	8.42	11.9	9.32	11.65
Rb	ppm	122	21.3	94.3	63	120.5	275	165.5	278	191	156
Re S	ppm %										
Sb	ppm										
Sc	ppm	11	15	32	6	8	3	8	3	9	3
Se	ppm				2	2	-	2	-	-	-
Sm	ppm	6.76	8.23	5.01	5.3	5.48	5.9	5.5	7.43	5.88	7.15
Sn	ppm	1	2	1	2	2	1	1	2	1	2
Sr	ppm	527	376	625	41.5	63.5	130	179.5	76.3	113	245
Та	ppm	1	2.8	1.5	0.8	0.8	1	0.7	1	0.8	1
Tb	ppm	0.7	0.93	0.64	0.6	0.37	0.63	0.58	0.75	0.64	0.73
Те	ppm	17.00	2.54	2.51	10.1-	10.75	10.05	10.75	10.5	10.05	
Th Ti	ppm	17.25	3.74	2.51	12.15	12.75	18.85	10.75	19.5	12.05	19
Ti Ti	%	5	5	<10	<10	10	10	<10	<10	10	~10
Tl Tm	ppm	5 0.29	5 0.3	<10 0.23	<10 0.28	0.24	10 0.3	<10 0.27	<10 0.31	10 0.3	<10 0.32
U I M	ppm	3.27	0.3	0.23	0.28	2.86	0.3 3.72	2.3	3.87	2.66	0.32 3.6
v	ppm ppm	101	207	260	83	2.86	24	2.5	24	103	24
w	ppm	1	1	200	11	4	2	2	2	1	24
Y	ppm	21.9	25.3	16.3	17.9	13.3	18.7	17.5	21.1	19.2	20.3
Yb	ppm	1.97	1.87	1.43	1.83	1.62	1.94	1.75	1.97	1.74	1.92
Zn	ppm	52	87	63	11	6	10	88	45	97	55
Zr	ppm	265	229	130	247	263	325	220	343	246	348

 Zn
 ppm
 52
 87
 63
 11
 6
 10
 88

 Zr
 ppm
 265
 229
 130
 247
 263
 325
 22

 Major oxides are reported in weight percent normalized to 100% amhydrous. Abbreviations are same as map units in geologic map (Plate 1).
 Samples "KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.
 'Whole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Table A1. Multi-element geochemistry of unaltered and altered rocks.

Table A1. Mu	lti-element	geochemistry of	unaltered and al	tered rocks.							
Sample	ID	KTC 457	KTC 458	KTC 460	KTC 463	KTC 465	KTC 467	KTC 468	KTC 469	KTC 472	KTC 473
UTM	East	540169	540297	540526	540416	541235	539830	539848	539718	538841	538520
NAD27	North	4419352	4419674	4419674	4420291	4420031	4421064	4421245	4421277	4421646	4420882
Unit Comment/Al	tona tio n	COcb	COcb	COcb	Td ad	Та	Ta	Та	Та	Ta	Ta
Whole-ro		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Ore chemi			1	1	1	1	1	1	1	1	1
Thin Sect											
SiO ₂	%	51.19	49.81	48.31	81.09	63.00	65.76	65.23	66.23	64.38	69.47
Al ₂ O ₃	%	18.22	16.79	14.74	14.73	16.99	17.60	19.12	17.68	17.12	17.52
FeO*	%	9.53	10.27	8.65	1.48	5.05	3.33	3.36	2.92	4.30	2.47
CaO	%	3.38	8.25	12.94	0.40	5.33	4.41	4.27	4.63	4.79	0.80
MgO	%	4.24	4.32	4.63	0.29	2.63	0.76	1.07	0.37	1.75	0.96
Na ₂ O	%	2.33	2.82	3.78	0.04	3.32	3.63	3.27	3.68	3.25	2.72
K ₂ O	%	5.61	2.83	2.40	1.04	2.26	3.24	2.22	3.08	3.12	4.52
Cr ₂ O ₃	% %	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01
TiO ₂ MnO	%	2.53 0.16	3.06 0.12	3.27 0.16	0.33 0.01	0.81 0.10	0.75 0.03	0.95 0.03	0.84 0.02	0.72 0.07	0.87 0.02
P ₂ O ₅	%	0.10	1.01	0.18	0.01	0.10	0.03	0.03	0.02	0.07	0.32
SrO	%	0.06	0.06	0.05	0.01	0.08	0.07	0.09	0.07	0.07	0.03
BaO	%	1.93	0.66	0.45	0.35	0.14	0.16	0.15	0.15	0.14	0.29
LOI		5.42	10.2	12.5	5.75	2.15	1.79	6.02	1.7	2.3	3.97
Ag	ppm	<0.5	<0.5	<0.5	<0.5	<0.5	0.25	0.25	0.25	0.25	0.25
Al	%										
As	ppm	5	<5	<5	26	<5	10	2.5	2.5	2.5	2.5
Au	ppm										
В	ppm									10	
Ba	ppm	I	5530	3550	3110	1275	1315	1305	1415	1255	2510
Be Bi	ppm										
C	ppm %										
Ca	%	I									
Cd	ppm	0.5	0.5	<0.5	<0.5	<0.5	0.25	0.25	0.25	0.25	0.25
Ce	ppm	196	164	82.8	95.4	79.1	87.1	109.5	88.3	82.8	76.7
Co	ppm	23	24	34		11	5	4	3	8	4
Cr	ppm	10	30	240	10	30	10	20	30	10	30
Cs	ppm	2.87	9.27	4.06	6.74	26.6	1.24	1.8	1.52	1.94	3.04
Cu	ppm	38	34	60	6	8	5	11	6	6	8
Dy	ppm	7.03	6.9	4.69	3.19	3.66	3.36	4.37	3.73	3.25	3.58
Er	ppm	3.19	2.95	2.3	1.63	2.1	1.88	2.02	2.25	1.98	2.02
Eu Fe	ppm %	3.8	3.46	2.37	1.34	1.41	1.35	1.88	1.62	1.27	1.29
re Ga		25.9	23.9	15.9	15.9	19.5	20.7	22.5	22.3	20.1	19.5
Gd	ppm ppm	10.05	9.62	6.37	4.07	4.52	4.2	6.21	5.21	4.32	4.79
Ge	ppm	10.05	9.02	0.57	4.07	4.52	4.2	0.21	5.21	4.52	4.79
Hf	ppm	9.5	8.7	5.6	6.6	5.3	6	6	5.9	5.9	5.6
Hg	ppm			8.7 5.6 6.6 5.3 6							
Но	ppm	1.26	1.25	0.88	0.6	0.71	0.66	0.79	0.78	0.66	0.72
In	ppm										
К	%										
La	ppm	106.5	88.6	40.1	52.5	41.7	47.3	56.4	49.2	44.6	40.4
Li	ppm	60	70	60	50	10	10	10	10	10	10
Lu	ppm	0.35	0.3	0.25	0.26	0.28	0.24	0.24	0.34	0.28	0.27
Mg Mn	%										
Mo	ppm ppm	3	3	<1	3	2	1	2	2	2	1
Na	%	-									
Nb	ppm	156.5	120.5	47.1	12.5	12.2	11.8	14	12.9	11.2	12.1
Nd	ppm	72.9	66.7	38.8	34.7	32.3	36	44.6	38	34.8	34.5
Ni	ppm	4	27	99	12	6	3	6	2	2	3
P	ppm		_								
Pb	ppm	6	2	0.02	15	14	12	15	13	12	11
Pr Rb	ppm	20.3 124.5	18.2 67.2	9.93 33	10.3 38.9	9.04 78.2	9.79 89.1	12.6 83	10.05 86.5	9.55 91.8	9.04 101.5
Re	ppm	124.5	67.2	33	38.9	/8.2	89.1	83	80.5	91.8	101.5
S	ppm %										
Sb	ppm										
Sc	ppm	5	15	20	3	11	8	12	9	10	11
Se	ppm										
Sm	ppm	13.1	12.3	7.52	5.86	5.94	6.19	8.09	6.15	5.74	5.48
Sn	ppm	3	3	2	2	2	2	2	2	2	1
Sr	ppm	574	422	361	131	683	625	779	698	658	300
Ta	ppm	8.7	6.8	3	0.9	0.7	0.7	0.8	0.7	0.7	0.7
Tb T-	ppm	1.39	1.34	0.91	0.58	0.61	0.57	0.83	0.72	0.63	0.65
Te Th	ppm	15.8	12.35	4.48	15.75	10.65	12.3	12.75	12.65	12.05	11.45
Ti	ppm %	13.0	12.33	7.40	10.10	10.05	12.3	12.13	12.05	12.05	11.40
TI	ppm	<10	<10	<10	<10	<10	5	5	5	5	5
Tm	ppm	0.43	0.38	0.31	0.22	0.29	0.25	0.28	0.27	0.27	0.27
U	ppm	3.44	2.82	1.24	3.96	2.47	2.69	3.25	2.86	2.48	2.25
v	ppm	101	208	248	30	122	99	125	104	96	110
w	ppm	4	3	2	8	1	1	2	2	2	5
Y	ppm	31.3	29.7	21.5	16.7	19	17.5	18.5	22.6	18.4	18.7
Yb	ppm	2.43	1.97	1.79	1.62	1.95	1.82	1.81	2.16	1.82	1.89
Zn	ppm	116	104	77	22	86	82	82	55	89	59
Zr	ppm	487	412	247	268	220	240	248	243	231	223
Major oxides a	re reported	in weight percent	normalized to 10	P/an hydrous A	hbreviations are s	ame as man units	in geologic man	(Plate 1)			

 Zn
 ppm
 116
 104
 77
 22
 86
 82
 82

 Zr
 ppm
 487
 412
 247
 268
 220
 240
 248

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are sume as map units in geologic map (Plate 1).
 Samples "KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.
 'Whole-rock geochemistry not submitted for outcrops previously sampled to avoil repeat analyses. Equivalent sample indicated.

Table A1. Multi-element geochemistry of unaltered and altered rocks.

Sample I UTM NAD27	D East North	KTC 475 538726 4417232	KTC 478 538869 4417369	KTC 479 538954 4417819	KTC 485 539150 4417525	KTC 486 539092 4417422	KTC 489 538964 4416609	KTC 490 539348 4417022	KTC 492 539363 4416795	KTC 496 539688 4416492	KTC 50 539727 4416818
Unit		Twd	Twd	COcb	0vb	4417422 Twp	4410009 Twp	4417022 Tmp	4410795 Tda	4410492 Tda	4410818 Tda
omment/Alt											
Whole-ro Ore chemis		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Thin Secti											
SiO ₂	%	65.43	71.95	49.87	45.45	65.22	59.38	73.39	65.00	68.12	65.37
Al ₂ O ₃ FeO*	% %	15.81 4.33	12.85 3.48	15.68 5.83	14.98 10.85	15.71 4.56	16.78 6.47	14.14 1.15	21.15 0.39	16.41 3.57	17.17 3.71
CaO	%	3.95	2.97	17.82	8.45	3.88	5.39	2.10	6.56	2.69	4.67
MgO	%	1.83	2.19	4.11	9.05	1.87	3.79	0.46	0.64	0.88	0.98
Na ₂ O	%	3.09	2.60	1.47	1.71	3.25	2.81	3.56	4.90	2.72	3.86
K ₂ O	%	4.27	2.88	1.93	4.45	4.19	3.70	4.71	0.44	4.60	3.24
Cr ₂ O ₃	%	0.01	0.01	0.01	0.05	0.01	0.01	0.01	0.01	0.01	0.00
TiO ₂	%	0.75	0.61	2.45	4.02	0.79	1.05	0.16	0.60	0.54	0.50
MnO	%	0.04	0.03	0.09	0.05	0.08	0.12	0.03	0.02	0.03	0.07
P_2O_5	%	0.24	0.27	0.60	0.70	0.26	0.31	0.07	0.17	0.20	0.16
SrO	%	0.08	0.04	0.05	0.04	0.06	0.06	0.05	0.10	0.06	0.08
BaO	%	0.17	0.12	0.09	0.19	0.13	0.13	0.17	0.02	0.19	0.19
LOI		2.42	1.65	0.45	1.44	1.73	4.88	0.89	4.43	4.25	1.02
Ag	ppm %	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Al As		68	2.5	18	194	2.5	2.5	10	9	10	8
Au	ppm ppm	08	2.5	10	194	2.5	2.5	10	,	10	8
B	ppm										
Ba	ppm	1560	1030	772	1615	1235	1085	1520	203	1775	1745
Be	ppm										
Bi	ppm										
С	%										
Ca	%										
Cd	ppm	0.8	0.25	0.5	0.7	0.25	0.25	0.25	0.25	0.25	0.25
Ce	ppm	111.5	79.2	116.5	106	102.5	77.7	52.2	89.7	103	105
Co Cr	ppm	7 5	6 40	16 60	47 390	12 30	16 10	1 5	0.5 5	4 5	5 10
Cr	ppm ppm	5.11	40	9.77	65.9	2.59	6.99	0.56	29.4	3.16	1.04
Cu	ppm	31	31	97	8	6	2	2	0.5	2	2
Dy	ppm	4.14	3.17	5.77	6.04	3.85	4.28	3.16	3.92	4.09	4.28
Er	ppm	2.39	1.68	3.23	2.8	2.24	2.34	1.77	2.13	2.12	2.23
Eu	ppm	1.42	1	2.65	3.11	1.44	1.44	0.99	0.82	1.57	1.63
Fe	%										
Ga	ppm	18.5	17.3	19.7	23	21.3	20.1	15.5	19.2	19.5	20.5
Gd	ppm	5.33	4.44	7.6	8.19	5.18	5.24	3.88	5.09	5.64	5.31
Ge	ppm										
Hf	ppm	6.1	5.5	6.9	7.7	6.6	5.1	4.7	8.6	8.7	7.4
Hg	ppm										
Ho	ppm	0.78	0.63	1.19	1.13	0.78	0.89	0.64	0.79	0.8	0.79
In K	ppm %										
La	ppm	57.7	41.1	56.2	53.4	57.6	41.4	26.5	36.7	60.7	60.6
Li	ppm	20	40	20	20	30	30	5	20	10	10
Lu	ppm	0.31	0.27	0.4	0.3	0.3	0.34	0.27	0.32	0.33	0.32
Mg	%										
Mn	ppm										
Mo	ppm	2	14	47	1	0.5	1	1	0.5	1	1
Na	%										
Nb	ppm	15.1	17.5	85.2	62	17.9	13.5	15.5	13.2	15.6	13.6
Nd	ppm	44.2	32	53	52.9	41.8	35.6	25.2	41.4	46.6	42.7
Ni P	ppm	1	11	38	193	11	2	0.5	0.5	0.5	1
P Pb	ppm ppm	16	13	1	2	20	5	5	1	2	28
Pr	ppm	12.05	9.03	13.95	12.45	11.3	9.23	6.29	11	12.35	11.6
Rb	ppm	116	97.6	63.9	372	149	108.5	127	10.6	149.5	72.8
Re	ppm		-								
s	%										
Sb	ppm										
Sc	ppm	10	7	16	25	9	16	3	5	6	5
Se	ppm	_	_			_	_		_	_	
Sm	ppm	7.7	5.42	9.52	11.05	7.34	7.14	5.19	7.47	8.21	7.74
Sn Sr	ppm	3	2	23	2	2	2	1	0.5	2	1
Sr Ta	ppm	595 1	308 1.1	381 5.3	310 3.6	530 1.3	554 0.9	412 1	846 0.9	508 1	690 0.8
Ta Tb	ppm ppm	0.72	0.59	1.05	1.16	0.73	0.9	0.54	0.9	0.72	0.8
Te	ppm	0.72	0.39	1.05	1.10	0.75	0.70	0.04	0./1	0.72	0.77
Th	ppm	19.35	18.9	7.96	5.88	23.5	14.35	15.75	18.05	17.7	16.05
Ti	%										
TI	ppm	5	5	5	5	5	10	5	5	5	5
Tm	ppm	0.32	0.25	0.42	0.39	0.32	0.35	0.28	0.33	0.32	0.32
U	ppm	3.92	4.52	3.79	1.69	4.83	3.19	3.35	2.31	3.07	2.4
V	ppm	95	83	186	330	103	196	2.5	41	41	49
W	ppm	2	3	3	4	2	3	1	2	2	1
Y	ppm	20.2	18.3	30.5	27.2	20.5	21.2	16.7	19.7	20.9	20.1
Yb 7 n	ppm	2.13	1.78	2.76	2.24	2.07	2.04	1.66	2.14	1.96	1.97
Zn Zr	ppm ppm	57 231	37 217	123 322	49 324	73 251	74 192	23 162	9 338	32 344	72 296
	PPm		normalized to 100			201	174		550	544	290

Table A1. Multi-element geochemistry of unaltered and	altered rocks

Table A1. M	1 ulti-element	geochemistry of unaltere	d and altered rocks.				
Sampl	e ID	Key 1601-1090	Key 1601-1234	Key 1601-1269	Key 1601-921.5	Key 1605-1167	Key 1605-1262
UTM .	East	539354	539354	539354	539354	538297	538297
NAD27	North	4419536	4419536	4419536	4419536	4420595	4420595
Uni		Tad	Tad	Tad	COcb	COcb	COcb
Comment/A							
Whole-		Y	Y	Y	Y	Y	Y
Ore cher							
Thin Se							
SiO ₂	%	66.90	67.41	63.12	58.38	44.49	53.48
Al ₂ O ₃	%	18.21	15.51	17.41	20.84	19.13	14.42
FeO*	%	3.98	4.99	5.61	5.52	10.83	6.89
CaO	%	0.58	3.87	3.80	0.66	10.15	10.10
MgO	%	2.62	1.92	2.99	6.08	6.27	4.07
Na ₂ O	%	0.10	0.92	2.04	0.06	0.11	3.33
K ₂ O	%	6.16	3.65	3.39	5.27	3.58	2.84
Cr ₂ O ₃	%	0.01	0.01	0.01	0.09	0.02	0.01
TiO ₂	%	0.85	0.74	0.81	2.64	3.94	2.73
MnO	%	0.03	0.05	0.03	0.03	0.12	0.12
P_2O_5	%	0.28	0.24	0.27	0.31	0.66	0.57
SrO	%	0.03	0.03	0.08	0.01	0.01	0.03
BaO	%	0.25	0.64	0.44	0.11	0.68	1.40
LOI		5.34	8.02	7.25	7.18	16.8	9.18
Ag	ppm	<0.5	0.5	<0.5	<0.5	<0.5	<0.5
Al	%	A-			0.7.1	0.7	
As	ppm	22	926	123	981	99	7
Au	ppm						
B	ppm	2250	5470	2700	0.17	51/0	
Ba	ppm	2250	5470	3790	946	5160	
Be	ppm						
Bi C	ppm %						
Ca	%						
Ca Cd		<0.5	<0.5	1.1	<0.5	<0.5	<0.5
Ca Ce	ppm	<0.5 79	<0.5 65.5	78.8	<0.5 42.1	<0.5 87.8	<0.5 78.9
	ppm						
Co Cr	ppm	6 20	7 20	7 20	46 650	21 150	20 90
	ppm	19.1	19.2				
Cs	ppm			26.4	16.3	8.7	6.81
Cu	ppm	18	10	2	173	40	24
Dy	ppm	3.66	3.13	3.73	3.4	5.6	4.73
Er Eu	ppm	2.09	1.7 0.94	2.01 1.6	1.89 0.98	2.56 2.44	2.19 2.37
Fe	ppm	1.11	0.94	1.0	0.98	2.44	2.37
re Ga	%	22.8	18.8	21	23.8	23.9	16.9
	ppm						
Gd	ppm	4.19	3.98	4.65	4.13	7.48	6.12
Ge Hf	ppm	6	4.9	5.5 4		6.7	5.8
	ppm	0	4.9	5.5	4	0./	5.8
Hg Ho	ppm	0.7	0.61	0.71	0.71	0.99	0.86
	ppm	0.7	0.01	0.71	0.71	0.99	0.80
In K	ppm %						
к La		40.3	34	41.4	20.7	41.2	38.4
Li	ppm	30	10	50	20.7	30	40
Lu	ppm ppm	0.33	0.26	0.3	0.24	0.27	0.26
Mg	%	0.55	0.20	0.5	0.24	0.27	0.20
Mn							
Mo	ppm ppm	2	3	3	1	1	1
Na	%	-	5	5	1	1	4
Nb	ppm	12.7	11	11.8	30.7	49.1	39.5
Nd	ppm	32.6	27.1	32.9	21.2	41	35.7
Ni	ppm	8	15	1	130	120	73
P	ppm	5		1		.20	, .
Pb	ppm		7	3	2	3	5
Pr	ppm	8.86	7.3	9	5.22	10.25	9.13
Rb	ppm	198.5	114	96.8	177	93.9	59.5
Re	ppm						
s	%						
Sb	ppm						
Sc	ppm	10	8	10	41	18	13
Se	ppm						
Sm	ppm	5.76	4.95	6.14	4.46	8.35	7.31
Sn	ppm	2	1	2	2	2	2
Sr	ppm	256	237	584	27.1	112	280
Та	ppm	0.8	0.8	0.7	1.9	2.8	2.4
Tb	ppm	0.6	0.53	0.64	0.56	0.99	0.82
Te	ppm						
Th	ppm	12.7	10.35	11.45	3.11	5.22	4.7
Ti	%						
TI	ppm	10	<10	<10	<10	<10	<10
Tm	ppm	0.33	0.24	0.3	0.26	0.33	0.26
U	ppm	3.43	2.23	2.38	1.66	1.5	1.75
v	ppm	146	116	132	371	252	194
w	ppm	10	1	1	7	9	1
Y	ppm	20.6	16.5	20	17.7	24.7	22.6
Yb	ppm	2.14	1.73	1.89	1.66	1.97	1.73
Zn	ppm	66	35	40	26	36	132
Zr	ppm	246	204	228	149	291	251
Major oxide	s are reported	in weight percent normaliz	ed to 100% an hydrous. Al	phreviations are same as m	an units in geologic man	(Plate 1)	

 Zr
 ppm
 000
 3.53
 240
 204

 Major oxides are reported in weight percent normalized to 100% anhydrous. Abbreviations are same as map units in geologic map (Plate 1).
 Samples "KS###" collected by Gabriel Aliaga. Samples "KTC###" and "Key XXXX" collected by Tom Chapin for U.S. Gold Corp.

 ¹Whole-rock geochemistry not submitted for outcrops previously sampled to avoid repeat analyses. Equivalent sample indicated.

Appendix B – U-Pb Zircon Results

Table B1. U-Pb zircon analyses.

Tuble D	1.U-PD 2					1	I	sotope rati	05				Apparent	ages (M	a)				
Analysis	U (ppm)	206Pb 204Pb	U/Th	206Pb* 207Pb*	* (%)	207Pb* 235U*	± (%)	206Pb* 238U	± (%)	error corr.	206Pb* 238U*	(Ma)	207Pb* 235U	(Ma)	206Pb* 207Pb*	(Ma)	Best age (Ma)	(Ma)	Conc (%)
Sample KS	5014 - Walti	qua rtz monz	onite (Two	Ð															
Spot 11 Spot 20	154 123	304 674	2.1 1.9	1298.8683 33.7686	26.6 38.3	0.0005 0.0212	26.6 38.4	0.0051 0.0052	1.1 1.6	$0.04 \\ 0.04$	32.8 33.3	0.4 0.5	0.6 21.3	0.1 8.1	NA NA	NA NA	32.8 33.3	0.4 0.5	NA NA
Spot 26	69	297	2.4	156.2076	381.1	0.0046	381.1	0.0052	1.7	0.00	33.5	0.6	4.7	17.7	NA	NA	33.5	0.6	NA
Spot 12 Spot 27	77 182	583 912	2.2 1.8	46.6904 32.7762	19.1 4.5	0.0155 0.0220	19.2 4.8	0.0052 0.0052	1.3 1.6	0.07 0.33	33.7 33.7	0.4 0.5	15.6 22.1	3.0 1.1	NA NA	NA NA	33.7 33.7	0.4 0.5	NA NA
Spot 1	168	2435	1.8	22.6937	6.1	0.0322	6.3	0.0053	1.3	0.20	34.0	0.4	32.1	2.0	NA	NA	34.0	0.4	NA
Spot 2 Spot 29	136 266	961 2974	1.7 2.1	27.5482 17.7836	11.4 5.4	0.0267 0.0413	11.5 5.5	0.0053 0.0053	1.3 1.2	0.11 0.22	34.3 34.3	$0.4 \\ 0.4$	26.7 41.1	3.0 2.2	NA 460.5	NA 118.8	34.3 34.3	0.4 0.4	NA NA
Spot 28	170	953	1.9	32.6063	14.7	0.0226	14.8	0.0053	1.4	0.09	34.4	0.5	22.7	3.3	NA	NA	34.4	0.5	NA
Spot 22 Spot 5	163 135	4035 1070	1.7 1.8	22.3234 23.6619	4.4 3.3	0.0330 0.0312	4.6 3.6	0.0053 0.0054	1.2 1.4	0.27 0.39	34.4 34.4	0.4 0.5	33.0 31.2	1.5 1.1	NA NA	NA NA	34.4 34.4	0.4 0.5	NA NA
Spot 32	158	4448	2.0	20.6818	2.8	0.0359	3.1	0.0054	1.1	0.38	34.7	0.4	35.8	1.1	115.5	66.9	34.7	0.4	NA
Spot 17 Spot 10	141 211	757 1104	1.8 1.8	27.3030 26.4018	5.6 6.2	0.0272 0.0282	5.7 6.3	0.0054 0.0054	1.3 1.3	0.22 0.20	34.7 34.7	$0.4 \\ 0.4$	27.3 28.2	1.5 1.7	NA NA	NA NA	34.7 34.7	0.4 0.4	NA NA
Spot 33	130	5571	1.9	20.8912	3.6	0.0358	3.9	0.0054	1.3	0.33	34.8	0.4	35.7	1.4	91.7	86.3	34.8	0.4	NA
Spot 6 Spot 23	149 289	1067 1200	1.9 1.8	25.7051 27.5245	12.0 8.1	0.0291 0.0272	12.1 8.1	0.0054 0.0054	1.4 1.2	0.12 0.15	34.8 34.9	0.5 0.4	29.1 27.2	3.5 2.2	NA NA	NA NA	34.8 34.9	0.5 0.4	NA NA
Spot 18	370	2337	2.3	22.7134	5.4	0.0330	5.5	0.0054	1.1	0.21	35.0	0.4	33.0	1.8	NA	NA	35.0	0.4	NA
Spot 30 Spot 4	110 185	873 372	2.1 2.0	32.2128 133.2132	6.5 34.1	0.0233 0.0056	6.6 34.1	0.0054 0.0055	1.1 1.2	0.17 0.04	35.0 35.0	$0.4 \\ 0.4$	23.4 5.7	1.5 1.9	NA NA	NA NA	35.0 35.0	0.4 0.4	NA NA
Spot 14	145	864	1.9	22.1899	19.7	0.0341	19.7	0.0055	1.1	0.06	35.3	0.4	34.0	6.6	NA	NA	35.3	0.4	NA
Spot 24 Spot 31	100 150	22560 303283	2.0 1.9	20.0614 19.6830	3.3 2.7	0.0379 0.0387	3.5 3.0	0.0055 0.0055	1.3 1.3	0.37 0.43	35.5 35.5	0.5 0.5	37.8 38.5	1.3	186.8 231.0	76.6 62.6	35.5 35.5	0.5 0.5	NA NA
Spot 8	155	819	1.5	15.0277	2.8	0.0507	3.1	0.0055	1.3	0.43	35.5	0.5	50.2	1.5	822.6	59.3	35.5	0.5	NA
Spot 19 Spot 21	150 114	27288 5866	2.1 1.9	18.9859 22.7037	2.9 3.5	0.0402 0.0337	3.2 3.8	0.0055 0.0056	1.3 1.4	0.40 0.38	35.6 35.7	0.5 0.5	40.0 33.7	1.2 1.2	313.7 NA	65.6 NA	35.6 35.7	0.5 0.5	NA NA
Spot 7	72	1958	2.2	23.5876	4.4	0.0325	4.7	0.0056	1.5	0.33	35.8	0.6	32.5	1.5	NA	NA	35.8	0.6	NA
Spot 13 Spot 25	216 187	11477 596	1.7 1.6	17.9565 12.8949	2.2 5.4	0.0430 0.0602	2.4 5.5	0.0056 0.0056	1.0 1.2	0.43 0.21	36.0 36.2	$0.4 \\ 0.4$	42.8 59.4	1.0 3.2	439.0 1134.5	47.9 107.0	36.0 36.2	0.4 0.4	NA NA
Spot 15	84	9084	2.1	19.5858	4.3	0.0397	4.6	0.0056	1.8	0.38	36.3	0.6	39.6	1.8	242.4	98.2	36.3	0.6	NA
Spot 35 Spot 9	164 261	410 48442	1.8 1.7	19.7072 15.8098	6.3 3.3	0.0395 0.0500	6.5 3.4	0.0057 0.0057	1.3 0.8	0.20 0.25	36.3 36.8	0.5 0.3	39.4 49.5	2.5 1.6	228.2 715.8	146.2 69.1	36.3 36.8	0.5 0.3	NA NA
Spot 16	165	1219	1.7	17.1067	3.7	0.0472	4.0	0.0059	1.4	0.36	37.7	0.5	46.9	1.8	545.9	81.6	37.7	0.5	NA
Spot 34 Spot 3	134 235	497 499	1.6 1.6	5.3919 7.3978	6.7 3.1	0.1667 0.1343	7.0 3.6	0.0065 0.0072	1.9 1.8	0.27 0.49	41.9 46.3	0.8 0.8	156.5 128.0	10.1 4.3	2701.6 2165.5	111.0 54.5	41.9 46.3	$0.8 \\ 0.8$	NA NA
	025 - Track	ıyandesite dil	as (Tta)																
Spot 39	208	386	1.7	124.0158	253.7	0.0057	253.7	0.0052	1.6	0.01	33.2	0.5	5.8	14.7	NA	NA	33.2	0.5	NA
Spot 64 Spot 41	155 100	561 422	1.7 2.0	35.3957 83.1034	15.1 25.4	0.0202 0.0087	15.2 25.4	0.0052 0.0052	1.4 1.5	0.09 0.06	33.3 33.6	0.4 0.5	20.3 8.8	3.0 2.2	NA NA	NA NA	33.3 33.6	0.4 0.5	NA NA
Spot 63	158	631	1.7	40.3005	35.6	0.0179	35.6	0.0052	1.1	0.03	33.7	0.4	18.0	6.4	NA	NA	33.7	0.4	NA
Spot 55 Spot 49	107 219	381 692	1.9 1.5	113.6155 29.9614	44.7 2.0	0.0064 0.0242	44.7 2.3	0.0052 0.0053	1.6 1.2	0.04 0.51	33.7 33.8	0.5 0.4	6.4 24.3	2.9 0.6	NA NA	NA NA	33.7 33.8	0.5 0.4	NA NA
Spot 59	146	1710	1.7	23.9371	7.2	0.0304	7.2	0.0053	0.9	0.13	33.9	0.3	30.4	2.2	NA	NA	33.9	0.3	NA
Spot 65 Spot 56	185 218	34363 491	1.5 1.8	19.4967 57.0985	3.0 11.9	0.0374 0.0128	3.1 11.9	0.0053 0.0053	1.0 1.0	0.33 0.09	34.0 34.0	$0.4 \\ 0.4$	37.3 12.9	1.2 1.5	252.9 NA	68.4 NA	34.0 34.0	0.4 0.4	NA NA
Spot 36	82	789	2.2	28.8175	12.9	0.0254	13.0	0.0053	1.7	0.13	34.2	0.6	25.5	3.3	NA	NA	34.2	0.6	NA
Spot 53 Spot 68	240 102	1748 343	1.5 1.7	24.3619 33.6414	5.4 10.6	0.0302 0.0219	5.5 10.7	0.0053 0.0053	1.2 1.4	0.21 0.13	34.3 34.4	0.4 0.5	30.2 22.0	1.6 2.3	NA NA	NA NA	34.3 34.4	0.4 0.5	NA NA
Spot 43	82	761	2.2	33.9598	20.7	0.0217	20.7	0.0053	1.4	0.07	34.4	0.5	21.8	4.5	NA	NA	34.4	0.5	NA
Spot 42 Spot 48	142 147	2848 1230	1.7 1.8	21.2642 23.4906	4.0 3.7	0.0347 0.0314	4.2 3.9	0.0053 0.0054	1.3 1.2	0.32 0.31	34.4 34.4	0.5 0.4	34.6 31.4	1.4 1.2	49.6 NA	94.7 NA	34.4 34.4	0.5 0.4	NA NA
Spot 61	124	721	1.7	26.5967	6.3	0.0278	6.4	0.0054	1.3	0.20	34.5	0.5	27.8	1.8	NA	NA	34.5	0.5	NA
Spot 38 Spot 62	74 138	742 1796	2.2 1.5	24.6829 23.2865	5.4 6.8	0.0302 0.0320	5.5 7.0	0.0054 0.0054	1.2 1.3	0.22 0.19	34.7 34.8	0.4 0.5	30.2 32.0	1.6 2.2	NA NA	NA NA	34.7 34.8	0.4 0.5	NA NA
Spot 52	241	4301	1.6	21.1940	2.5	0.0353	2.8	0.0054	1.3	0.45	34.9	0.4	35.2	1.0	57.4	60.1	34.9	0.4	NA
Spot 44 Spot 47	195 108	780 828	1.9 1.9	33.3918 16.9659	15.5 16.8	0.0225 0.0442	15.5 16.9	0.0054 0.0054	1.2 1.5	0.08 0.09	35.0 35.0	0.4 0.5	22.6 43.9	3.5 7.3	NA 564.0	NA 368.3	35.0 35.0	0.4 0.5	NA NA
Spot 54	148	645	1.6	20.0752	7.5	0.0374	7.7	0.0055	1.5	0.19	35.1	0.5	37.3	2.8	185.2	175.8	35.1	0.5	NA
Spot 58 Spot 67	175 160	913 766	1.8 1.8	22.0689 33.7000	16.6 19.7	0.0341 0.0224	16.7 19.8	0.0055 0.0055	1.5 1.1	0.09 0.05	35.1 35.2	0.5 0.4	34.1 22.5	5.6 4.4	NA NA	NA NA	35.1 35.2	0.5 0.4	NA NA
Spot 60	115	2518	2.3	25.4381	3.7	0.0297	3.9	0.0055	1.1	0.29	35.3	0.4	29.7	1.1	NA	NA	35.3	0.4	NA
Spot 70 Spot 51	216 254	1949 14259	1.4 1.6	20.6907 18.8116	8.3 2.8	0.0367 0.0404	8.4 3.0	0.0055 0.0055	0.9 0.9	0.11 0.29	35.4 35.4	0.3 0.3	36.6 40.2	3.0 1.2	114.4 334.6	196.7 64.0	35.4 35.4	0.3 0.3	NA NA
Spot 37	206	3007	1.9	22.3122	3.0	0.0343	3.3	0.0055	1.2	0.37	35.6	0.4	34.2	1.1	NA	NA	35.6	0.4	NA
Spot 69 Spot 46	198 222	803 2493	1.8 1.4	16.1687 21.9912	3.3 4.0	0.0475 0.0352	3.5 4.1	$0.0056 \\ 0.0056$	$1.1 \\ 1.1$	0.32 0.26	35.8 36.1	$0.4 \\ 0.4$	47.1 35.1	1.6 1.4	667.9 NA	71.7 NA	35.8 36.1	$0.4 \\ 0.4$	NA NA
Spot 66	119	6336	2.1	22.0849 14.6072	3.5	0.0353	3.8	0.0057	1.5	0.40	36.4	0.5	35.2	1.3	NA	NA	36.4	0.5	NA
Spot 57 Spot 45	191 212	18340 959	1.6 1.6	14.6072	4.5 8.3	0.0537 0.0518	4.7 8.3	0.0057	1.5 1.0	0.32 0.12	36.6 36.7	0.5 0.4	53.2 51.3	2.4 4.2	881.6 800.4	92.1 173.4	36.6 36.7	0.5 0.4	NA NA
Spot 40	355	3830	1.7	20.3805	1.8	0.0392	2.1	0.0058	1.0	0.46	37.2	0.4	39.0	0.8	150.0	43.0	37.2	0.4	NA
Spot 50	168	331	1.5	8.6170	13.9	0.0947	14.7	0.0059	4.8	0.33	38.0	1.8	91.9	12.9	1895.4	250.6	38.0	1.8	NA
Sample KS Spot 29	2130	ite porphyry 4336	(Trp) 3.0	20.3030	1.5	0.0357	1.8	0.0053	1.0	0.54	33.9	0.3	35.7	0.6	158.9	36.2	33.9	0.3	NA
Spot 27	3217	138058	2.9	20.3343	0.7	0.0370	1.1	0.0055	0.8	0.74	35.1	0.3	36.9	0.4	155.3	17.4	35.1	0.3	NA
Spot 33 Spot 5	2586 147	7570 2058	3.1 1.9	21.1728 21.8590	0.7 3.5	$\begin{array}{c} 0.0355 \\ 0.0344 \end{array}$	1.1 3.7	$0.0055 \\ 0.0055$	0.8 1.1	0.73 0.29	35.1 35.1	0.3 0.4	35.4 34.4	0.4 1.2	59.9 NA	17.3 NA	35.1 35.1	0.3 0.4	NA NA
Spot 9	3440	24040	3.8	21.1583	0.8	0.0360	1.1	0.0055	0.8	0.70	35.6	0.3	35.9	0.4	61.5	18.5	35.6	0.3	NA
Spot 26 Spot 19	1409 581	24348 15999	3.7 1.8	20.9622 20.0677	1.0 1.5	$0.0364 \\ 0.0380$	1.2 1.8	0.0055 0.0055	0.6 1.0	0.52 0.54	35.6 35.6	0.2 0.3	36.3 37.9	0.4 0.7	83.6 186.1	23.9 35.3	35.6 35.6	0.2 0.3	NA NA
Spot 14	3593	17350	3.1	21.1106	1.0	0.0362	1.3	0.0055	0.9	0.67	35.6	0.3	36.1	0.5	66.8	23.5	35.6	0.3	NA
Spot 6	4228 3297	17633 22007	2.0 3.1	21.4136 21.3024	0.6 1.1	$\begin{array}{c} 0.0360 \\ 0.0362 \end{array}$	1.0 1.5	$0.0056 \\ 0.0056$	0.7 1.0	0.77 0.67	35.9 36.0	0.3 0.4	35.9 36.1	0.3 0.5	32.8 45.3	14.8 27.3	35.9 36.0	0.3 0.4	NA NA
Spot 28 Spot 16	2119	49228	3.8	20.5787	1.1	0.0362	1.5	0.0056	0.9	0.67	36.0	0.4	37.4	0.5	45.5	27.3	36.0	0.4	NA
Spot 30	2398 3254	12947 13047	3.3 2.2	20.6188 21.1353	1.0 1.2	0.0375	$1.4 \\ 1.4$	0.0056	1.0	0.73	36.0 36.1	0.4 0.3	37.3	0.5 0.5	122.7	22.9 27.5	36.0 36.1	0.4 0.3	NA NA
Spot 34 Spot 10	3254 4916	30596	2.2 3.6	21.1353 21.3035	0.9	0.0366 0.0364	1.4	0.0056 0.0056	0.8 0.8	0.58 0.68	36.1	0.3	36.5 36.3	0.5	64.1 45.1	27.5	36.1	0.3	NA NA
Spot 35	3979	13172	2.7	21.4586	0.8	0.0361	1.1	0.0056	0.8	0.74	36.2	0.3	36.0	0.4	27.8	18.3	36.2	0.3	NA
Spot 11 Spot 23	3945 3419	11202 30307	2.4 3.2	21.6946 21.1165	0.8 0.9	0.0357 0.0367	1.1 1.2	0.0056 0.0056	0.8 0.8	0.71 0.69	36.2 36.2	0.3	35.7 36.6	0.4 0.4	1.5 66.2	18.2 20.9	36.2 36.2	0.3	NA NA
Spot 13	3658	41387	2.6	21.0770	0.8	0.0369	1.2	0.0056	0.9	0.75	36.2	0.3	36.7	0.4	70.7	19.5	36.2	0.3	NA
Spot 18 Spot 25	2902 3115	236709 50491	3.2 3.8	20.9100 21.0912	0.7 0.9	0.0372 0.0369	1.1 1.3	0.0056 0.0057	0.8 1.0	0.73 0.74	36.3 36.3	0.3 0.4	37.1 36.8	0.4 0.5	89.6 69.1	17.6 20.8	36.3 36.3	0.3 0.4	NA NA
Spot 24	1889	42947	2.7	21.2745	0.9	0.0366	1.3	0.0057	0.9	0.71	36.3	0.3	36.5	0.5	48.4	21.0	36.3	0.3	NA

Table B1. U-Pb zircon analyses.

1 able D	1.0-102	arcon ana	·				I	sotope rati	05				Apparent	ages (M					
Analysis	U (ppm)	206Pb 204Pb	U/Th	206Pb* 207Pb*	* (%)	207Pb* 235U*	* (%)	206Pb* 238U	* (%)	error corr.	206Pb* 238U*	(Ma)	207Pb* 235U	± (Ma)	206Pb* 207Pb*	(Ma)	Best age (Ma)	(Ma)	Conc (%)
Spot 17	2406	40271	3.2	21.2089	1.0	0.0368	1.3	0.0057	0.9	0.66	36.4	0.3	36.7	0.5	55.8	23.4	36.4	0.3	NA
Spot 8 Spot 7	4121 1648	7001 13516	2.4 3.5	20.9396 20.8818	1.1 1.2	0.0374 0.0376	1.4 1.4	0.0057 0.0057	1.0 0.7	0.68 0.48	36.6 36.7	0.4 0.2	37.3 37.5	0.5 0.5	86.2 92.7	25.3 29.2	36.6 36.7	0.4 0.2	NA NA
Spot 4 Spot 31	1563 208	130552 4086	3.4 2.3	20.9628 20.8241	1.0 2.5	0.0376 0.0379	1.4 2.7	0.0057 0.0057	0.9 1.0	0.69 0.38	36.7 36.8	0.3 0.4	37.5 37.7	0.5 1.0	83.5 99.3	23.4 58.5	36.7 36.8	0.3 0.4	NA NA
Spot 12	1132	16020	4.2	19.6395	1.5	0.0402	1.9	0.0057	1.2	0.65	36.8	0.5	40.0	0.8	236.1	33.6	36.8	0.5	NA
Spot 3 Spot 15	2816 1694	61401 5587	2.8 2.5	20.8414 21.9587	0.8 1.0	0.0379 0.0360	1.1 1.4	0.0057 0.0057	0.8 0.9	0.71 0.68	36.9 36.9	0.3 0.3	37.8 35.9	0.4 0.5	97.3 NA	19.0 NA	36.9 36.9	0.3 0.3	NA NA
Spot 32	2551 193	8654 654	3.5 2.1	21.1195 13.3840	1.5 10.5	$0.0374 \\ 0.0592$	1.7 10.6	0.0057 0.0057	0.8 1.5	0.48 0.14	36.9 37.0	0.3 0.5	37.3 58.4	0.6	65.9 1060.0	35.4 211.6	36.9 37.0	0.3 0.5	NA NA
Spot 22 Spot 1	3279	7866	2.9	22.0347	0.8	0.0360	1.3	0.0058	1.0	0.77	37.0	0.4	35.9	6.0 0.5	NA	NA	37.0	0.4	NA
Spot 20 Spot 21	1455 320	10297 29226	3.6 2.9	21.4431 20.5326	1.5 2.1	$0.0373 \\ 0.0391$	1.7 2.5	0.0058 0.0058	0.8 1.4	0.48 0.55	37.3 37.5	0.3 0.5	37.2 39.0	0.6	29.6 132.5	35.5 50.1	37.3 37.5	0.3 0.5	NA NA
Spot 2	379	30968	3.1	20.9540	2.0	0.0387	2.2	0.0059	1.0	0.44	37.8	0.4	38.6	0.8	84.5	48.0	37.8	0.4	NA
Sample KS Spot 122	248	ric rhyolite (1 602	(vc) 2.2	44.0838	56.3	0.0165	56.3	0.0053	1.3	0.02	34.0	0.4	16.6	9.3	NA	NA	34.0	0.4	NA
Spot 118 Spot 110	242 323	506 1438	2.6 1.7	42.7517 22.5066	65.2 4.6	0.0172 0.0328	65.2 4.8	0.0054 0.0054	1.3 1.3	0.02 0.27	34.4 34.5	0.4 0.4	17.4 32.8	11.2 1.5	NA NA	NA NA	34.4 34.5	0.4 0.4	NA NA
Spot 123	219	2105	3.1	24.4529	4.1	0.0304	4.3	0.0054	1.2	0.29	34.7	0.4	30.4	1.3	NA	NA	34.7	0.4	NA
Spot 128 Spot 127	243 222	786 772	3.0 2.6	31.1818 34.9889	4.3 4.3	0.0239 0.0213	4.5 4.5	0.0054 0.0054	1.3 1.4	0.29 0.31	34.7 34.7	0.5 0.5	24.0 21.4	1.1 0.9	NA NA	NA NA	34.7 34.7	0.5 0.5	NA NA
Spot 101 Spot 121	236 418	418 2441	2.9 0.9	39.9913 22.9710	29.5 6.4	$\begin{array}{c} 0.0187 \\ 0.0327 \end{array}$	29.5 6.7	$0.0054 \\ 0.0054$	1.2 1.8	0.04 0.28	34.9 35.0	0.4 0.6	18.8 32.7	5.5 2.1	NA NA	NA NA	34.9 35.0	0.4 0.6	NA NA
Spot 117	362	2581	2.8	23.4869	3.4	0.0320	3.5	0.0055	1.0	0.28	35.1	0.3	32.0	1.1	NA	NA	35.1	0.3	NA
Spot 103 Spot 116	333 514	2057 1415	2.6 0.9	22.4256 27.0642	2.5 1.7	0.0335 0.0280	2.7 2.0	0.0055 0.0055	1.1 1.1	0.40 0.56	35.1 35.3	0.4 0.4	33.5 28.0	0.9 0.6	NA NA	NA NA	35.1 35.3	0.4 0.4	NA NA
Spot 133	247	1622	2.8	23.1116	4.6	0.0328	4.7	0.0055	1.3	0.27	35.4	0.4	32.8	1.5	NA	NA	35.4	0.4	NA
Spot 108 Spot 102	237 164	4614 961	2.7 2.1	21.6167 30.7782	2.8 3.2	0.0351 0.0248	2.9 3.9	$0.0055 \\ 0.0055$	$1.0 \\ 2.1$	0.34 0.54	35.4 35.7	0.4 0.7	35.0 24.9	$1.0 \\ 1.0$	10.2 NA	66.4 NA	35.4 35.7	0.4 0.7	NA NA
Spot 130 Spot 126	470 259	1174 2293	2.8 2.9	25.4036 25.1764	16.3 2.5	0.0302 0.0305	16.4 2.8	0.0056 0.0056	1.3 1.1	0.08 0.40	35.8 35.8	0.5 0.4	30.2 30.5	4.9 0.8	NA NA	NA NA	35.8 35.8	0.5 0.4	NA NA
Spot 131	312	2302	1.6	23.6863	7.9	0.0325	8.0	0.0056	1.0	0.12	35.9	0.4	32.4	2.5	NA	NA	35.9	0.4	NA
Spot 135 Spot 112	243 271	835 1740	3.0 2.2	33.5712 24.8409	19.6 5.9	0.0229 0.0310	19.6 6.0	0.0056 0.0056	1.1 1.1	0.06 0.18	35.9 35.9	0.4 0.4	23.0 31.0	4.5 1.8	NA NA	NA NA	35.9 35.9	0.4 0.4	NA NA
Spot 104 Spot 132	153 219	2104 22159	2.4	21.3224 20.2726	3.7 2.3	0.0361 0.0381	4.2 2.7	0.0056 0.0056	1.8 1.3	0.44 0.49	35.9 36.0	0.7 0.5	36.0 37.9	1.5	43.0 162.4	89.1 54.6	35.9 36.0	0.7 0.5	NA NA
Spot 107	262	3704	2.7	23.1217	2.6	0.0334	2.9	0.0056	1.2	0.41	36.1	0.4	33.4	0.9	NA	NA	36.1	0.4	NA
Spot 109 Spot 105	229 220	9350 39975	2.0 1.4	21.6762 20.1856	3.0 2.6	0.0358 0.0385	3.2 2.9	0.0056 0.0056	1.2 1.3	0.37 0.45	36.1 36.2	0.4 0.5	35.7 38.4	1.1 1.1	3.5 172.4	72.7 60.4	36.1 36.2	0.4 0.5	NA NA
Spot 114	319	2575	3.0	20.2751	4.2	0.0385	4.4	0.0057	1.1	0.25	36.4	0.4	38.4	1.7	162.1	99.2	36.4	0.4	NA
Spot 120 Spot 119	192 274	3696 1340	2.9 2.9	17.6230 28.8651	3.2 2.5	0.0443 0.0271	3.4 2.9	0.0057 0.0057	1.2 1.4	0.35 0.48	36.4 36.4	0.4 0.5	44.0 27.1	1.5 0.8	480.6 NA	70.6 NA	36.4 36.4	0.4 0.5	NA NA
Spot 106 Spot 115	185 323	1996 8106	2.2 3.3	25.1874 21.6435	3.1 2.3	$\begin{array}{c} 0.0312 \\ 0.0365 \end{array}$	3.3 2.7	0.0057 0.0057	1.2 1.3	0.36 0.49	36.6 36.8	0.4 0.5	31.2 36.4	1.0 1.0	NA 7.2	NA 56.3	36.6 36.8	0.4 0.5	NA NA
Spot 125	481	5732	1.7	19.8014	3.0	0.0402	3.4	0.0058	1.6	0.46	37.1	0.6	40.0	1.3	217.1	69.5	37.1	0.6	NA
Spot 124 Spot 111	194 244	1736 5017	1.9 2.4	14.7380 17.5398	5.6 2.5	0.0545 0.0464	5.8 2.9	0.0058 0.0059	1.5 1.5	0.27 0.50	37.4 38.0	0.6 0.6	53.8 46.1	3.0 1.3	863.2 491.1	116.2 55.7	37.4 38.0	0.6 0.6	NA NA
Spot 129	1308	35283	3.4	21.2539	1.0	0.0827	1.4	0.0127	0.9	0.68	81.7	0.7	80.6	1.0	50.7	23.7	81.7	0.7	NA
Spot 113 Spot 134	79 226	1738 8593	2.8 3.2	10.6435 9.8956	2.7 1.1	0.6553 0.9555	4.4 1.9	$0.0506 \\ 0.0686$	3.4 1.5	0.79 0.80	318.3 427.7	10.7 6.2	511.8 681.0	17.6 9.4	$1506.4 \\ 1642.8$	50.9 21.1	318.3 1642.8	$10.7 \\ 21.1$	NA 26.0
Sample KS Spot 52	051 - Dacite 57	agglomerate	e (Tda) 1.9	14.239	7.14	0.04525	7.40	0.00468	1.94	0.26	30.1	0.6	44.9	3.3	934.2	146.7	30.1	0.6	NA
Spot 54	56 47	170 157	2.1 2.4	23.718	13.26	0.02817	13.44	0.00485	2.18	0.16	31.2	0.7	28.2	3.7	-217.9	334.7 134.2	31.2	0.7	NA
Spot 68 Spot 39	39	137	2.4	18.912 16.825	5.90 37.84	0.03598 0.04097	6.15 37.88	0.00494 0.00500	1.71 1.72	0.28 0.05	31.7 32.2	0.5 0.6	35.9 40.8	2.2 15.1	322.5 582.2	850.5	31.7 32.2	0.5 0.6	NA NA
Spot 36 Spot 51	58 40	245 190	1.5 2.0	107.7096 57.390	19.1 39.72	0.0065 0.01215	19.2 39.77	0.0051 0.00506	1.9 2.06	0.10 0.05	32.5 32.5	0.6 0.7	6.5 12.3	1.3 4.8	NA 0.0	NA NA	32.5 32.5	0.6 0.7	NA NA
Spot 62	56	247	1.8	785.3285	124.3	0.0009	124.3	0.0051	1.5	0.01	32.7	0.5	0.9	1.1	NA	NA	32.7	0.5	NA
Spot 65 Spot 66	52 42	266 607	2.0 1.9	5936.8440 32.0726	3597.1 8.9	0.0001 0.0225	3597.1 9.1	0.0052 0.0052	1.7 2.0	0.00 0.22	33.3 33.7	0.5 0.7	0.1 22.6	4.4 2.0	NA NA	NA NA	33.3 33.7	0.5 0.7	NA NA
Spot 63	51	218	1.7	257.2167	6.3	0.0028	6.5	0.0052	1.5	0.23	33.7	0.5	2.9	0.2	NA	NA	33.7	0.5	NA
Spot 37 Spot 70	58 51	394 440	2.3 2.0	44.0557 84.3056	12.6 12.0	$0.0165 \\ 0.0086$	12.8 12.2	0.0053 0.0053	1.9 2.0	0.15 0.17	33.9 34.0	0.6 0.7	16.6 8.7	2.1 1.1	NA NA	NA NA	33.9 34.0	0.6 0.7	NA NA
Spot 67 Spot 41	44 50	302 621	1.6 1.9	52.3428 38.0871	91.2 9.6	0.0140 0.0193	91.3 9.8	0.0053	2.0 1.7	0.02 0.18	34.2 34.4	0.7 0.6	14.1 19.5	12.8 1.9	NA NA	NA NA	34.2 34.4	0.7 0.6	NA NA
Spot 64	50	621	2.1	32.9393	5.5	0.0224	5.7	0.0054	1.5	0.27	34.4	0.5	22.5	1.3	NA	NA	34.4	0.5	NA
Spot 56 Spot 57	60 48	856 584	2.0 1.9	21.5279 29.1668	16.0 16.3	0.0343 0.0253	16.1 16.4	0.0054 0.0054	1.7 1.6	0.10 0.10	34.4 34.4	0.6 0.6	34.2 25.4	5.4 4.1	20.1 NA	387.0 NA	34.4 34.4	0.6 0.6	NA NA
Spot 42	56 46	360	1.5 2.2	60.8370	68.5	0.0122	68.6	0.0054	1.4	0.02	34.6 34.7	0.5	12.3	8.4	NA	NA	34.6 34.7	0.5	NA
Spot 60 Spot 58	50	2663 1465	1.6	20.9378 23.2539	3.8 7.1	0.0356 0.0321	4.1 7.3	0.0054 0.0054	1.4 1.9	0.35 0.27	34.8	0.5 0.7	35.5 32.0	1.4 2.3	86.4 NA	91.2 NA	34.8	0.5 0.7	NA NA
Spot 55 Spot 40	228 47	38593 319	1.2 1.9	20.4266 233.9748	2.4 281.1	0.0365 0.0032	2.7 281.1	0.0054 0.0054	1.1 2.1	0.40 0.01	34.8 34.9	0.4 0.7	36.4 3.2	1.0 9.1	144.7 NA	57.2 NA	34.8 34.9	0.4 0.7	NA NA
Spot 53	61	591	1.6	27.0782	16.7	0.0279	16.8	0.0055	1.5	0.09	35.2	0.5	27.9	4.6	NA	NA	35.2	0.5	NA
Spot 44 Spot 69	47 58	685 17086	1.8 2.0	28.7798 18.3214	10.0 5.9	0.0263 0.0416	10.1 6.2	0.0055 0.0055	1.8 1.8	0.18 0.30	35.3 35.5	0.6 0.7	26.4 41.4	2.6 2.5	NA 394.1	NA 131.8	35.3 35.5	0.6 0.7	NA NA
Spot 43 Spot 47	57 54	19724 3489	1.6 2.1	17.7949 21.0440	5.5 4.2	$0.0432 \\ 0.0366$	5.8 4.6	$0.0056 \\ 0.0056$	1.8 1.7	0.31 0.37	35.8 35.9	0.7 0.6	42.9 36.5	2.5 1.6	459.2 74.4	122.9 100.9	35.8 35.9	0.7 0.6	NA NA
Spot 45	58	2565	1.9	19.0779	6.9	0.0406	7.0	0.0056	1.6	0.22	36.2	0.6	40.5	2.8	302.7	156.6	36.2	0.6	NA
Spot 61 Spot 48	49 46	2546 1967	2.4 2.2	26.5399 24.8245	4.3 5.1	$\begin{array}{c} 0.0299 \\ 0.0320 \end{array}$	4.6 5.4	$0.0058 \\ 0.0058$	1.8 1.8	0.39 0.33	37.0 37.1	0.7 0.7	29.9 32.0	1.4 1.7	NA NA	NA NA	37.0 37.1	0.7 0.7	NA NA
Spot 49	58	803	1.6	15.1954	6.4	0.0527	6.7	0.0058 0.0060	2.0	0.29	37.3	0.7	52.1	3.4	799.4	135.1	37.3	0.7	NA
Spot 46 Spot 50	50 29	285 90	1.1 2.1	8.7051 3.999	8.2 18.23	0.26871	8.6 18.61	0.00780	2.5 3.77	0.29 0.20	38.5 50.1	1.0 1.9	92.0 241.7	7.6 40.0	$1877.1 \\ 3184.5$	$148.1 \\ 291.3$	38.5 50.1	1.0 1.9	NA NA
Spot 38 Spot 59	55 55	1696 244	2.3 1.6	17.9720 2.8817	5.2 3.6	0.0624 0.4121	6.5 4.9	$0.0081 \\ 0.0086$	4.0 3.2	0.61 0.66	52.2 55.3	2.1 1.8	61.5 350.4	3.9 14.4	437.1 3693.3	115.4 55.6	52.2 55.3	2.1 1.8	NA NA
		intermediate					-					-				-		-	
Spot 84 Spot 59	6941 6625	29996 11105	2.6 2.8	21.3908 21.3796	0.8	0.0310 0.0313	1.1 1.4	0.0048 0.0049	0.8 1.1	0.68 0.75	31.0 31.3	0.2 0.3	31.0 31.3	0.3 0.4	35.4 36.6	20.0 22.1	31.0 31.3	0.2 0.3	NA NA
Spot 71	5963	25419	2.8	21.2463	0.9	0.0323	1.5	0.0050	1.1	0.79	32.0	0.4	32.3	0.5	51.6	21.4	32.0	0.4	NA
Spot 79 Spot 56	6248 5801	35009 12969	3.2 3.0	21.2802 21.4652	0.8 0.8	0.0325 0.0324	1.3 1.0	0.0050 0.0051	1.1 0.7	0.79 0.65	32.3 32.5	0.3 0.2	32.5 32.4	0.4 0.3	47.8 27.0	19.2 18.8	32.3 32.5	0.3 0.2	NA NA
Spot 63	5533	35206	2.6	21.7286	0.9	0.0321	1.4	0.0051	1.1	0.78	32.6	0.4	32.1	0.5	NA	NA	32.6	0.4	NA
Spot 51 Spot 60	4878 4986	9134 10395	3.0 2.4	21.8071 21.8194	1.6 0.8	0.0323 0.0324	2.0 1.5	0.0051 0.0051	1.1 1.3	0.55 0.84	32.9 33.0	0.4 0.4	32.3 32.4	0.6 0.5	NA NA	NA NA	32.9 33.0	0.4 0.4	NA NA
Spot 68 Spot 83	4259 4624	32164 15990	3.3 3.6	21.1737 21.7009	0.8	0.0337 0.0329	1.2 1.4	0.0052 0.0052	0.9	0.75 0.69	33.3 33.3	0.3 0.3	33.6 32.9	0.4 0.5	59.8 NA	18.6 NA	33.3 33.3	0.3	NA NA
Spot 64	4301	11715	3.4	21.7561	0.9	0.0329	1.4	0.0052	1.1	0.78	33.4	0.4	32.9	0.5	NA	NA	33.4	0.4	NA
Spot 75 Spot 58	4308 3226	38348 21517	2.1 3.3	21.3369 21.3800	0.8 1.0	0.0337 0.0338	1.2 1.5	0.0052 0.0052	0.9 1.1	0.75 0.75	33.6 33.7	0.3 0.4	33.7 33.8	0.4 0.5	41.4 36.6	19.5 23.8	33.6 33.7	0.3 0.4	NA NA
• • •						• • • •					-						•		

Table B1. U-Pb zircon analyses.

Table B1.	U-Pb z	ircon ana	lyses.				T	sotope rati	05		1		Apparent	ages (M	a)		1		
Analysis	U (ppm)	206Pb 204Pb	U/Th	206Pb* 207Pb*	* (%)	207Pb* 235U*	± (%)	206Pb* 238U	± (%)	error corr.	206Pb* 238U*	(Ma)	207Pb* 235U	(Ma)	206Pb* 207Pb*	(Ma)	Best age (Ma)	(Ma)	Conc (%)
Spot 62 Spot 78 Spot 55 Spot 57 Spot 87 Spot 81 Spot 81 Spot 70 Spot 65 Spot 74 Spot 74 Spot 74 Spot 74 Spot 74 Spot 74 Spot 74 Spot 75 Spot 74 Spot 75 Spot 75 Spot 75 Spot 55 Spot 52 Spot 76 Spot 77 Spot 76 Spot 77 Spot 76 Spot 77 Spot 76 Spot 77 Spot 76 Spot 77 Spot 76 Spot 77 Spot 76 Spot 7	4076 4180 141 4067 3456 3408 2739 2409 3650 3061 3496 2064 140 2076 2705 2505 2505 2505 173 1795 1965 2298 269 89	$\begin{array}{c} 13440\\ 65197\\ 1237\\ 133043\\ 109046\\ 17496\\ 17086\\ 17496\\ 233807\\ 19783\\ 25251\\ 23262\\ 16369\\ 771\\ 13010\\ 34889\\ 15559\\ 5640\\ 33219\\ 25537\\ 5640\\ 33219\\ 25537\\ 1026\\ 1004\\ 1006\\ 10$	$\begin{array}{c} 3.2\\ 2.0\\ 0.9\\ 2.5\\ 3.3\\ 2.4\\ 3.2\\ 2.6\\ 2.7\\ 2.7\\ 2.4\\ 0.9\\ 3.2\\ 3.1\\ 1.5\\ 3.3\\ 6\\ 3.4\\ 1.7\\ 0.8\\ \end{array}$	$\begin{array}{c} 21.6825\\ 21.229\\ 23.0520\\ 23.0520\\ 21.3462\\ 21.2812\\ 21.0879\\ 21.30879\\ 21.30879\\ 21.32572\\ 21.4470\\ 21.3371\\ 21.4838\\ 36.7099\\ 21.0263\\ 21.4281\\ 21.6467\\ 19.0052\\ 21.428\\ 21.6467\\ 19.005\\ 21.1134\\ 20.8830\\ 12.0417\\ 12.0853\end{array}$	$\begin{array}{c} 0.7\\ 0.8\\ 5.5\\ 1.0\\ 0.7\\ 1.1\\ 1.2\\ 0.9\\ 0.9\\ 0.9\\ 1.2\\ 1.4\\ 6.6\\ 0.9\\ 1.2\\ 1.0\\ 3.5\\ 1.0\\ 1.1\\ 1.0\\ 4.6\\ 9.3 \end{array}$	$\begin{array}{c} 0.0335\\ 0.0343\\ 0.0316\\ 0.0343\\ 0.0345\\ 0.0345\\ 0.0348\\ 0.0348\\ 0.0348\\ 0.0348\\ 0.0348\\ 0.0348\\ 0.0348\\ 0.0348\\ 0.0348\\ 0.0348\\ 0.0357\\ 0.0343\\ 0.0357\\ 0.0360\\ 0.0363\\ 0.0360\\ 0.0366\\ 0.0365\\ 0.0655\\ \end{array}$	$\begin{array}{c} 1.2 \\ 1.3 \\ 5.6 \\ 1.5 \\ 1.2 \\ 1.7 \\ 1.6 \\ 1.3 \\ 1.4 \\ 1.6 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.4 \\ 3.7 \\ 1.5 \\ 1.3 \\ 4.7 \\ 9.5 \end{array}$	$\begin{array}{c} 0.0053\\ 0.0053\\ 0.0053\\ 0.0053\\ 0.0054\\ 0.0054\\ 0.0054\\ 0.0054\\ 0.0054\\ 0.0054\\ 0.0054\\ 0.0055\\ 0.005\\ 0.05$	$\begin{array}{c} 1.0\\ 1.1\\ 1.2\\ 1.1\\ 1.0\\ 1.3\\ 1.0\\ 0.9\\ 0.9\\ 1.1\\ 1.1\\ 1.0\\ 1.5\\ 1.0\\ 0.8\\ 0.9\\ 1.2\\ 1.3\\ 1.0\\ 0.9\\ 1.2\\ 1.3\\ 1.0\\ 0.9\\ 1.2\\ 1.9\end{array}$	$\begin{array}{c} 0.82\\ 0.80\\ 0.22\\ 0.76\\ 0.82\\ 0.76\\ 0.64\\ 0.70\\ 0.70\\ 0.67\\ 0.60\\ 0.22\\ 0.71\\ 0.58\\ 0.68\\ 0.31\\ 0.78\\ 0.68\\ 0.68\\ 0.68\\ 0.70\\ 0.25\\ 0.20\\ \end{array}$	$\begin{array}{c} 33.9\\ 33.9\\ 34.0\\ 34.1\\ 34.5\\ 34.6\\ 34.6\\ 34.6\\ 34.7\\ 34.7\\ 34.9\\ 35.0\\ 35.0\\ 35.0\\ 35.2\\ 35.3\\ 35.4\\ 35.6\\ 35.8\\ 36.0\\ 36.9\\ 36.9\\ 36.9 \end{array}$	$\begin{array}{c} 0.3 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.7 \\ 0.7 \\ \end{array}$	$\begin{array}{c} 33.5\\ 34.2\\ 31.6\\ 34.2\\ 34.7\\ 35.0\\ 34.7\\ 34.8\\ 34.6\\ 34.8\\ 34.7\\ 37.7\\ 20.6\\ 35.6\\ 35.6\\ 35.6\\ 35.6\\ 35.2\\ 34.9\\ 39.7\\ 35.9\\ 39.7\\ 36.2\\ 36.9\\ 64.7\\ 64.5\\ \end{array}$	$\begin{array}{c} 0.4\\ 0.5\\ 1.8\\ 0.5\\ 0.4\\ 0.6\\ 0.5\\ 0.4\\ 0.5\\ 0.5\\ 0.5\\ 1.5\\ 0.5\\ 1.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 2.9\\ 5.9\\ \end{array}$	$\begin{array}{c} 2.8\\ 53.5\\ NA\\ 40.4\\ 47.7\\ 69.4\\ 44.6\\ 50.3\\ 29.1\\ 41.4\\ 29.1\\ 41.4\\ 50.0\\ 218.6\\ NA\\ 76.4\\ 31.2\\ 6.8\\ 311.4\\ 57.0\\ 66.5\\ 92.6\\ 1269.4\\ 1262.3\\ \end{array}$	17.1 19.3 NA 23.0 16.8 25.7 29.0 21.8 21.1 20.7 28.3 31.7 NA 22.3 31.7 NA 22.3 28.4 24.7 25.6 22.7 88.9 182.7	33.9 33.9 34.0 34.1 34.5 34.6 34.6 34.7 34.7 34.9 35.0 35.0 35.0 35.2 35.3 35.4 35.6 35.8 36.0 36.9	$\begin{array}{c} 0.3 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.7 \\ \end{array}$	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Sample KS0. Spot 180 Spot 180 Spot 180 Spot 35 Spot 35 Spot 35 Spot 35 Spot 132 Spot 132 Spot 153 Spot 153 Spot 153 Spot 153 Spot 155 Spot 82 Spot 162 Spot 155 Spot 82 Spot 195 Spot 192 Spot 192 Spot 192 Spot 192 Spot 192 Spot 192 Spot 193 Spot 193 Spot 193 Spot 193 Spot 193 Spot 193 Spot 193 Spot 194 Spot 195 Spot 194 Spot 194 Spot 194 Spot 194 Spot 194 Spot 195 Spot 195 Spot 194 Spot 195 Spot 195 Spot 195 Spot 194 Spot 195 Spot 195 Spot 195 Spot 194 Spot 195 Spot 195 Spot 195 Spot 194 Spot 195 Spot 194 Spot 195 Spot 195 Spot 194 Spot 195 Spot 194 Spot 195 Spot 195 Spot 195 Spot 195 Spot 194 Spot 195 Spot 195 Spot 194 Spot 194 Spot 195 Spot 194 Spot 195 Spot 194 Spot 195 Spot 195 Spot 195 Spot 195 Spot 195 Spot 194 Spot 195 Spot 194 Spot 195 Spot 194 Spot 195 Spot 1	48 - Ference 13028	ry Conglome 3136 3136 3136 3136 3136 3136 3136 3136 3136 3136 3136 3136 31348 31489 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 3148 314	rate (Teg 1.7 1.3 4.9 4.9 4.0 4.0 0.7 4.3 4.0 0.7 4.3 4.0 0.7 4.3 4.0 0.7 4.3 4.0 0.7 4.3 4.0 0.7 4.3 4.0 0.7 4.3 4.0 0.7 4.3 4.0 0.7 4.3 2.6 1.1 4.8 0.7 4.3 2.9 0.7 5.0 5.0 5.0 5.0 5.0 5.0 6.2 6 4.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0	20.7358 21.3817 21.0927 21.3817 21.09457 21.3410 21.1749 23.2104 21.9539 22.6901 21.6526 24.1397 21.2243 21.3033 21.1600 30.2406 20.5758 21.3033 60.7021 21.8758 30.2406 20.5758 21.0124 20.5404 20.5758 21.0124 20.5404 20.5758 21.0124 20.5404 20.5758 21.0124 20.5404 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.3015 21.4015 21.4057 21.8035 21.4057 21.8015 21.4057 21.8015 21.4057 21.8015 21.4057 21.4057 21.8015 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.4057 21.40	$\begin{array}{c} 4.4\\ 0.8\\ 0.7\\ 1.4\\ 0.8\\ 0.7\\ 1.2\\ 0.8\\ 1.3\\ 0.8\\ 4.1\\ 1.3\\ 0.8\\ 4.1\\ 1.3\\ 0.8\\ 1.3\\ 0.9\\ 1.1\\ 1.3\\ 0.9\\ 1.2.5\\ 2.9\\ 2.1\\ 1.0\\ 2.5\\ 2.9\\ 2.1\\ 1.0\\ 2.5\\ 2.9\\ 1.1\\ 1.0\\ 2.5\\ 2.9\\ 1.1\\ 1.0\\ 0.8\\ 1.9\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.3\\ 1.1\\ 1.3\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 2.1\\ 1.7\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 2.2\\ 1.1\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.7\\ 1.4\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	0.0271 0.0290 0.0302 0.0302 0.0302 0.0302 0.0331 0.0333 0.0332 0.0332 0.0332 0.0332 0.0332 0.0333 0.0345 0.0345 0.0347 0.0344 0.0359 0.0352 0.0361 0.0344 0.0359 0.0244 0.0359 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0359 0.0344 0.0345 0.0344 0.0345 0.0277 0.0377 0.0377 0.0377 0.0377 0.0345 0.0344 0.0345 0.0344 0.0359 0.0355 0.0346 0.0359 0.0355 0.0366 0.0278 0.0346 0.0359 0.0355 0.0366 0.0278 0.0365 0.0366 0.0371 0.0371 0.0371 0.0371 0.0371 0.0371 0.0375 0.0345 0.0365 0.0365 0.0366 0.0375 0.0346 0.0375 0.0347 0.0375 0.0347 0.0375 0.0346 0.0375 0.0346 0.0375 0.0346 0.0375 0.0346 0.0359 0.0359 0.0346 0.0359 0.0355 0.0366 0.0355 0.0366 0.0375 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355	$\begin{array}{c} 4.7\\ 1.2\\ 1.7\\ 1.2\\ 1.7\\ 1.4.3\\ 1.6\\ 6.8\\ 8.8\\ 8.8\\ 1.5\\ 3.8\\ 1.7\\ 1.4\\ 1.6\\ 6.8\\ 2.8\\ 2.0\\ 5.6\\ 2.8\\ 1.4\\ 1.6\\ 6.2\\ 8.8\\ 2.0\\ 5.6\\ 2.8\\ 1.4\\ 1.6\\ 1.2.6\\ 7.9\\ 3.2\\ 2.5\\ 1.5\\ 2.9\\ 3.2\\ 2.1\\ 1.5\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 2.5\\ 1.5\\ 3.8\\ 2.7\\ 1.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.7\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 2.5\\ 3.8\\ 3.2\\ 2.5\\ 3.8\\ 3.2\\ 2.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.2\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.5\\ 3.8\\ 3.8\\ 3.5\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8\\ 3.8$	0.0041 0.0045 0.0049 0.0049 0.0049 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055	$\begin{array}{c} 1.7\\ 0.9\\ 1.5\\ 2.5\\ 1.4\\ 0.8\\ 1.4\\ 1.2\\ 1.5\\ 1.1\\ 1.6\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$	$\begin{array}{c} 0.36\\ 0.76\\ 0.76\\ 0.90\\ 0.17\\ 0.86\\ 0.32\\ 0.68\\ 0.32\\ 0.68\\ 0.32\\ 0.68\\ 0.32\\ 0.68\\ 0.32\\ 0.68\\ 0.32\\ 0.68\\ 0.32\\ 0.68\\ 0.21\\ 0.77\\ 0.41\\ 0.70\\ 0.38\\ 0.27\\ 0.49\\ 0.49\\ 0.71\\ 0.54\\ 0.74\\ 0.71\\ 0.54\\ 0.74\\ 0.71\\ 0.20\\ 0.54\\ 0.74\\ 0.71\\ 0.20\\ 0.54\\ 0.74\\ 0.71\\ 0.20\\ 0.54\\ 0.73\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.61\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\ 0.68\\$	$\begin{array}{c} 26.2\\ 29.0\\ 29.8\\ 31.2\\ 31.8\\ 32.9\\ 33.8\\ 34.0\\ 34.1\\ 34.2\\ 34.2\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.5\\ 34.5\\ 34.5\\ 34.6\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\$	$\begin{array}{c} 0.4\\ 0.3\\ 0.4\\ 0.8\\ 0.4\\ 0.8\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.6\\ 0.4\\ 0.5\\ 0.6\\ 0.4\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.5\\ 0.6\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5$	$\begin{array}{c} 27.1\\ 29.1\\ 30.2\\ 31.3\\ 31.2\\ 33.3\\ 31.2\\ 33.3\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 35.7\\ 31.2\\ 33.3\\ 31.4\\ 34.4\\ 33.9\\ 33.6\\ 34.1\\ 34.3\\ 34.4\\ 33.9\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 33.6\\ 34.1\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\ 35.9\\$	$\begin{array}{c} 1.3\\ 0.3\\ 0.5\\ 0.6\\ 0.4\\ 1.3\\ 0.5\\ 0.6\\ 0.9\\ 0.4\\ 1.3\\ 0.5\\ 0.6\\ 0.9\\ 0.4\\ 0.7\\ 0.7\\ 0.9\\ 0.5\\ 0.6\\ 0.9\\ 0.4\\ 0.4\\ 0.4\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	109.4 36.4 68.2 1539.9 41.0 5539.9 41.0 539.9 41.0 539.9 41.0 539.9 41.0 539.9 41.0 539.9 41.0 539.9 41.0 539.9 131.7 NA NA NA NA NA NA NA NA NA NA NA NA NA	102.9 118.9 17.8 20.0 20.0 NA NA 22.7 NA 22.7 NA 22.7 NA 22.3 NA 154.1 NA NA NA NA NA NA NA NA NA NA NA NA NA	$\begin{array}{c} 26.2\\ 29.0\\ 29.8\\ 31.2\\ 31.2\\ 31.2\\ 31.2\\ 32.9\\ 33.8\\ 34.0\\ 34.2\\ 34.2\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.4\\ 34.5\\ 34.5\\ 34.5\\ 34.5\\ 34.5\\ 34.6\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 34.7\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.1\\ 35.2\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\$	$\begin{array}{c} 0.4\\ 0.3\\ 0.4\\ 0.3\\ 0.6\\ 0.8\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.5\\ 0.6\\ 0.5\\ 0.4\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.6\\ 0.5\\ 0.5\\ 0.6\\ 0.5\\ 0.5\\ 0.6\\ 0.5\\ 0.5\\ 0.6\\ 0.5\\ 0.5\\ 0.5\\ 0.6\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5$	NA NA NA NA NA NA NA NA NA NA NA NA NA N

Table B1. U-Pb zircon analyses.

I able D I	1. U-PD 2	ircon ana	lyses.			1	I	sotope rati	05		1		Apparent	ages (M	a)		1		
Analysis	U (ppm)	206Pb 204Pb	U/Th	206Pb* 207Pb*	* (%)	207Pb* 235U*	± (%)	206Pb* 238U	(%)	error corr.	206Pb* 238U*	(Ma)	207Pb* 235U	± (Ma)	206Pb* 207Pb*	(Ma)	Best age (Ma)	(Ma)	Conc (%)
Spot 144	1676	13702	4.4	21.5084	1.4	0.0356	1.8	0.0056	1.2	0.64	35.7	0.4	35.5	0.6	22.2	34.0	35.7	0.4	NA
Spot 50 Spot 92	434 804	1108 2354	2.5 2.2	20.0579 23.2408	14.1 2.2	0.0382 0.0330	14.2 2.7	0.0056 0.0056	1.1 1.4	0.08 0.54	35.7 35.7	0.4 0.5	38.0 32.9	5.3 0.9	187.2 NA	330.8 NA	35.7 35.7	0.4 0.5	NA NA
Spot 121	1865	5424	5.1	22.5705	1.4	0.0340	1.9	0.0056	1.3	0.68	35.8	0.5	34.0	0.6	NA	NA	35.8	0.5	NA
Spot 27 Spot 59	2537 161	14451 2856	4.2 1.4	21.6455 23.9731	1.2 5.2	0.0355 0.0321	1.7 5.5	0.0056 0.0056	1.2 1.9	0.70 0.33	35.8 35.9	0.4 0.7	35.4 32.1	0.6 1.8	7.0 NA	29.3 NA	35.8 35.9	0.4 0.7	NA NA
Spot 175	865	2386	4.0	22.2430	3.4	0.0346	3.7	0.0056	1.2	0.33	35.9	0.4	34.6	1.2	NA	NA	35.9	0.4	NA
Spot 150 Spot 162	2105 357	14432 922	4.1 3.7	21.4244 29.2625	1.3 13.4	0.0360 0.0263	1.6 13.4	0.0056 0.0056	1.0 1.4	0.62 0.10	36.0 36.0	0.4 0.5	35.9 26.4	0.6 3.5	31.6 NA	30.1 NA	36.0 36.0	0.4 0.5	NA NA
Spot 110	267	2415	2.7	23.0976	7.7	0.0334	7.8	0.0056	1.5	0.19	36.0	0.5	33.3	2.6	NA	NA	36.0	0.5	NA
Spot 189 Spot 154	558 216	11595 1903	2.5 1.3	21.4434 22.5961	1.9 3.2	0.0360 0.0341	2.3 3.5	0.0056 0.0056	1.3 1.3	0.57 0.38	36.0 36.0	0.5 0.5	35.9 34.1	0.8 1.2	29.5 NA	45.0 NA	36.0 36.0	0.5 0.5	NA NA
Spot 137	462	7988	2.8	21.8500	2.4	0.0353	2.8	0.0056	1.4	0.51	36.0	0.5	35.2	1.0	NA	NA	36.0	0.5	NA
Spot 29 Spot 31	1159 1939	8279 15340	1.5 4.3	21.4888 21.6224	1.5 1.5	0.0359 0.0357	1.8 2.3	0.0056 0.0056	1.0 1.8	0.54 0.78	36.0 36.0	0.3 0.7	35.8 35.6	0.6 0.8	24.4 9.5	35.9 34.9	36.0 36.0	0.3 0.7	NA NA
Spot 161	444	16781	1.4	20.5636	2.2	0.0376	2.7	0.0056	1.5	0.55	36.1	0.5	37.5	1.0	129.0	52.5	36.1	0.5	NA
Spot 86 Spot 38	611 252	26647 1811	3.7 2.8	20.7597 21.4536	2.4 2.8	0.0373 0.0361	2.8 3.0	0.0056 0.0056	1.4 1.0	0.49 0.33	36.1 36.1	0.5 0.4	37.2 36.0	1.0 1.1	106.6 28.4	56.9 67.7	36.1 36.1	0.5 0.4	NA NA
Spot 126	238	1779899	3.2	18.4695	3.3	0.0419	3.7	0.0056	1.6	0.43	36.1	0.6	41.7	1.5	376.0	74.3	36.1	0.6	NA
Spot 199 Spot 141	394 323	2670 1838	2.3 3.8	23.7514 25.2419	2.4 3.0	0.0326 0.0307	2.6 3.2	0.0056 0.0056	1.2 1.2	0.44 0.36	36.2 36.2	0.4 0.4	32.6 30.7	0.8 1.0	NA NA	NA NA	36.2 36.2	0.4 0.4	NA NA
Spot 72	366	7996	3.1	19.1790	2.2	0.0404	2.6	0.0056	1.4	0.53	36.2	0.5	40.3	1.0	290.6	50.2	36.2	0.5	NA
Spot 23 Spot 64	423 445	3231 2142	2.6 3.5	22.4942 24.2638	3.7 1.9	0.0345 0.0320	4.0 2.4	0.0056 0.0056	1.5 1.4	0.38 0.60	36.2 36.2	0.5 0.5	34.4 32.0	1.3 0.7	NA NA	NA NA	36.2 36.2	0.5 0.5	NA NA
Spot 95	539	351635	2.7	21.1933	2.3	0.0366	2.7	0.0056	1.3	0.50	36.2	0.5	36.5	1.0	57.5	54.8	36.2	0.5	NA
Spot 24 Spot 6	342 443	861 3648	3.8 1.9	32.0728 19.6367	3.1 2.2	0.0242 0.0396	3.3 2.4	0.0056 0.0056	1.4 1.1	0.41 0.43	36.2 36.3	0.5 0.4	24.3 39.4	0.8 0.9	NA 236.4	NA 51.0	36.2 36.3	0.5 0.4	NA NA
Spot 5	349	4814	3.0	19.7102	4.3	0.0395	4.4	0.0056	1.1	0.25	36.3	0.4	39.3	1.7	227.8	99.0	36.3	0.4	NA
Spot 183 Spot 71	595 467	4666 4594	2.4 1.7	22.5495 24.3425	2.1 4.1	0.0345 0.0320	2.4 4.3	0.0056 0.0056	1.3 1.3	0.53 0.31	36.3 36.3	0.5 0.5	34.4 32.0	0.8 1.3	NA NA	NA NA	36.3 36.3	0.5 0.5	NA NA
Spot 53	207	2130	1.6	21.4175	3.6	0.0364	3.8	0.0057	1.4	0.36	36.3	0.5	36.3	1.4	32.4	85.5	36.3	0.5	NA
Spot 79 Spot 16	293 575	6288 3245	2.2 2.3	20.9797 18.7768	2.7 2.3	0.0371 0.0415	3.0 2.7	0.0057 0.0057	1.1 1.4	0.38 0.53	36.3 36.4	0.4 0.5	37.0 41.3	1.1 1.1	81.6 338.8	64.8 51.2	36.3 36.4	0.4 0.5	NA NA
Spot 123	2073	19626	3.6	21.0644	1.1	0.0371	1.6	0.0057	1.1	0.72	36.4	0.4	37.0	0.6	72.1	26.4	36.4	0.4	NA
Spot 131 Spot 134	300 2249	1786 6507	2.7 4.1	18.1810 21.8460	3.5 1.0	0.0430 0.0358	3.8 1.4	0.0057 0.0057	1.4 1.0	0.36 0.69	36.4 36.5	0.5 0.4	42.7 35.7	1.6 0.5	411.3 NA	78.9 NA	36.4 36.5	0.5 0.4	NA NA
Spot 160	275	3581	2.9	16.9082	2.5	0.0463	2.7	0.0057	1.1	0.40	36.5	0.4	45.9	1.2	571.4	54.4	36.5	0.4	NA
Spot 168 Spot 33	628 324	3646 782	1.0 2.2	20.7820 17.7921	2.8 10.5	0.0377 0.0441	3.1 10.6	0.0057 0.0057	1.2 1.4	0.39 0.13	36.5 36.6	0.4 0.5	37.5 43.8	1.1 4.6	104.1 459.5	66.4 234.0	36.5 36.6	0.4 0.5	NA NA
Spot 84	115	2952	2.2	27.2771	4.1	0.0288	4.4	0.0057	1.6	0.36	36.6	0.6	28.8	1.3	NA	NA	36.6	0.6	NA
Spot 68 Spot 177	215 274	20477 1311	1.7 2.7	17.8012 27.7186	5.5 8.2	0.0441 0.0284	5.8 8.4	0.0057 0.0057	1.8 2.1	0.32 0.25	36.7 36.7	0.7 0.8	43.9 28.4	2.5 2.4	458.3 NA	121.1 NA	36.7 36.7	0.7 0.8	NA NA
Spot 125	227	8747	3.1	21.1481	3.1	0.0373	3.3	0.0057	1.2	0.35	36.8	0.4	37.1	1.2	62.6	73.7	36.8	0.4	NA
Spot 87 Spot 4	377 619	2590 1589	2.1 1.8	25.8534 25.1318	2.9 2.2	0.0305 0.0315	3.2 2.4	0.0057 0.0057	1.3 1.0	0.41 0.40	36.8 36.9	0.5 0.4	30.5 31.4	1.0 0.8	NA NA	NA NA	36.8 36.9	0.5 0.4	NA NA
Spot 124	297	3310	2.4	15.4244	5.0	0.0513	5.1	0.0057	1.1	0.22	36.9	0.4	50.8	2.5	768.0	105.8	36.9	0.4	NA
Spot 14 Spot 119	79 377	1942 6179	0.9 1.5	16.6151 15.7641	5.5 4.7	0.0476 0.0502	5.8 4.9	0.0057 0.0057	1.9 1.4	0.33 0.29	36.9 36.9	0.7 0.5	47.2 49.7	2.7 2.4	609.3 721.9	118.4 100.7	36.9 36.9	0.7 0.5	NA NA
Spot 117	396	3684	0.8	22.7980	2.6	0.0347	2.8	0.0057	1.2	0.41	36.9	0.4	34.7	1.0	NA	NA	36.9	0.4	NA
Spot 99 Spot 111	218 588	4118 1305	3.4 1.1	21.8754 19.4805	3.3 4.4	0.0362 0.0407	3.5 4.6	0.0058 0.0058	1.2 1.2	0.33 0.26	37.0 37.0	0.4 0.4	36.1 40.5	1.2 1.8	NA 254.8	NA 102.0	37.0 37.0	0.4 0.4	NA NA
Spot 17	1855	146314	2.6	21.0459	1.2	0.0377	1.6	0.0058	1.1	0.67	37.0	0.4	37.6	0.6	74.2	28.6	37.0	0.4	NA
Spot 78 Spot 108	193 76	1170 1006	1.0 0.9	24.6049 27.6581	3.6 4.4	0.0322 0.0288	3.9 4.9	0.0058 0.0058	1.4 2.0	0.37 0.42	37.0 37.2	0.5 0.8	32.2 28.8	1.2 1.4	NA NA	NA NA	37.0 37.2	0.5 0.8	NA NA
Spot 164	322 254	6454 2136	2.5 2.3	17.1539 20.1359	3.3 2.9	0.0465 0.0396	3.5 3.2	0.0058 0.0058	1.1 1.3	0.33 0.41	37.2 37.2	0.4 0.5	46.1 39.5	1.6 1.2	539.9 178.2	72.1 67.8	37.2 37.2	0.4 0.5	NA NA
Spot 43 Spot 102	1143	6555	2.5	20.1339	2.9	0.0390	2.6	0.0058	1.5	0.41	37.3	0.5	34.8	0.9	NA	NA	37.2	0.5	NA
Spot 2	477	1397	3.3	25.6118	4.4	0.0313	4.6	0.0058	1.3	0.28	37.4	0.5	31.3	1.4	NA	NA	37.4	0.5	NA
Spot 149 Spot 151	358 171	178636 629	2.8 2.6	20.6514 18.8448	2.0 8.0	0.0389 0.0426	2.3 8.2	0.0058 0.0058	1.2 1.5	0.52 0.18	37.4 37.5	0.5 0.5	38.7 42.4	0.9 3.4	118.9 330.6	46.9 182.6	37.4 37.5	0.5 0.5	NA NA
Spot 60	425	932	3.0	12.4121 21.9217	3.5	0.0650 0.0369	3.8	0.0059	1.4	0.36	37.6	0.5	63.9	2.4	1210.1	69.6	37.6	0.5	NA
Spot 145 Spot 88	289 1159	1244 204949	2.1 6.8	20.3369	2.8 1.8	0.0369	3.1 2.2	0.0059 0.0059	1.3 1.3	0.43 0.60	37.7 37.8	0.5 0.5	36.8 39.6	1.1 0.9	NA 155.0	NA 41.9	37.7 37.8	0.5 0.5	NA NA
Spot 138	317 325	966	1.1 2.5	17.5993	10.8 3.9	0.0464	10.8	0.0059	1.1	0.10	38.1	0.4	46.0	4.9 2.2	483.6	238.3	38.1	0.4	NA
Spot 113 Spot 101	1089	6686 4941	3.8	14.9360 22.6493	3.8	0.0548 0.0363	4.2 4.0	0.0059 0.0060	1.4 1.3	0.34 0.33	38.2 38.4	0.5 0.5	54.2 36.2	1.4	835.4 NA	82.2 NA	38.2 38.4	0.5 0.5	NA NA
Spot 165 Spot 128	269 89	3496 1540	2.7 0.8	18.9849 13.0067	2.5 5.3	0.0438 0.0641	2.8 5.6	$0.0060 \\ 0.0060$	1.3 1.8	0.48 0.32	38.8 38.9	0.5 0.7	43.5 63.1	1.2 3.4	313.8 1117.3	56.5 106.6	38.8 38.9	0.5 0.7	NA NA
Spot 26	222	2911	2.5	15.5203	3.3	0.0541	3.7	0.0061	1.7	0.45	39.1	0.7	53.5	2.0	754.9	70.7	39.1	0.7	NA
Spot 174 Spot 142	1066 129	18213 1087	4.4 1.4	20.1955 7.1190	1.4 22.7	0.0419 0.1228	1.8 22.9	0.0061 0.0063	1.2 2.7	0.64 0.12	39.4 40.8	0.5 1.1	41.6 117.6	0.7 25.4	171.3 2232.2	32.8 398.6	39.4 40.8	0.5 1.1	NA NA
Spot 94	431	372	2.0	5.2894	6.3	0.1827	6.5	0.0070	1.6	0.25	45.0	0.7	170.4	10.2	2733.3	104.1	45.0	0.7	NA
Spot 171 Spot 22	293 364	3191 8501	1.9 5.4	13.6463 21.6091	2.6 1.5	0.0944 0.0962	3.4 2.0	0.0093 0.0151	2.2 1.4	0.64 0.68	59.9 96.5	1.3 1.3	91.6 93.3	3.0 1.8	1020.8 11.0	53.2 35.9	59.9 96.5	1.3 1.3	NA NA
Spot 129	609	6710	3.4	14.5670	2.6	0.2118	4.4	0.0224	3.6 1.5	0.82	142.7	5.1	195.1	7.9	887.3	52.9	142.7	5.1 2.5	NA
Spot 73 Spot 69	351 423	7899 13994	2.3 3.4	20.8314 10.4798	2.0 1.3	0.1717 0.7916	2.5 2.5	0.0260 0.0602	1.5 2.2	0.60 0.87	165.2 376.8	2.5 7.9	160.9 592.1	3.7 11.2	98.5 1535.6	47.4 23.6	165.2 376.8	2.5 7.9	NA NA
Spot 41	273	31115	2.9	13.3999	0.9	1.8155	1.6	0.1765	1.3	0.82	1047.9	12.8	1051.1	10.5	1057.6	18.3	1057.6	18.3	99.1
Spot 114 Spot 139	258 101	22236 71516	3.6 2.2	13.1961 13.1591	0.8 1.1	1.9603 1.9114	1.3 1.7	0.1877 0.1825	1.0 1.3	0.78 0.77	1108.9 1080.6	10.6 13.0	1102.0 1085.1	8.9 11.3	1088.4 1094.0	16.7 21.9	1088.4 1094.0	16.7 21.9	101.9 98.8
Spot 76	305	36665	2.7	13.1322	0.6	1.9139	1.2	0.1823 0.1824 0.1694	1.0	0.86	1079.9	10.0	1085.9	7.8	1098.1	12.0	1098.1	12.0	98.3
Spot 178 Spot 122	293 104	43592 70496	2.6 2.4	13.0742 12.5496	0.9 1.3	1.7860 1.9994	1.7 1.7	0.1694 0.1821	1.5 1.0	0.87 0.62	1008.9 1078.2	14.2 10.2	1040.4 1115.3	11.4 11.3	1106.9 1188.3	17.1 26.0	1106.9 1188.3	17.1 26.0	91.1 90.7
Spot 36	74	93523	1.1	11.7999	0.8	2.1503	3.0	0.1841	2.9	0.96	1089.4	29.1	1165.2	20.9	1308.9	16.3	1308.9	16.3	83.2
Spot 52 Spot 3	137 85	30270 18988	1.6 1.6	11.7736 11.5486	0.9 1.1	2.6278 2.8169	1.4 1.7	0.2245 0.2360	1.1 1.4	0.77 0.79	1305.5 1366.1	12.8 16.6	1308.5 1360.1	10.3 12.8	1313.2 1350.5	17.1 20.3	1313.2 1350.5	17.1 20.3	99.4 101.2
Spot 127 Spot 197	60	12955	2.4	11.5300	0.8	2.7886	2.1	0.2333	1.9	0.92	1351.8	23.1	1352.5	15.4	1353.7	15.2	1353.7	15.2	99.9
Spot 197 Spot 62	90 296	36890 28862	1.6 4.8	11.3513 11.3378	0.9 0.7	2.9308 2.4809	1.5 1.9	0.2414 0.2041	1.2 1.8	0.81 0.93	1393.9 1197.3	14.6 19.6	1389.9 1266.5	$11.0 \\ 14.0$	1383.7 1386.0	16.5 13.7	1383.7 1386.0	16.5 13.7	100.7 86.4
Spot 48	151	92721	2.8	10.9977	0.9	2.9987	1.4	0.2393	1.1	0.78	1383.0	13.5	1407.3	10.6	1444.3	16.7	1444.3	16.7	95.8
Spot 146 Spot 147	150 178	37109 53551	1.9 3.0	10.9840 9.6044	0.7 0.6	3.0915 4.0763	1.2 1.1	0.2464 0.2841	1.0 0.9	0.83 0.83	1419.8 1611.8	13.0 13.4	1430.6 1649.6	9.5 9.3	1446.6 1698.0	13.1 11.8	1446.6 1698.0	13.1 11.8	98.1 94.9
Spot 166	135	24431	3.6	9.5554	0.8	4.1326	1.4	0.2865	1.2	0.85	1624.1	17.6	1660.8	11.8	1707.4	14.1	1707.4	14.1	95.1
Spot 112	185	57419	2.3	9.2845	0.7	4.3178	1.6	0.2909	1.5	0.90	1645.9	21.3	1696.8 1840.5	13.5	1760.2	13.1	1760.2	13.1	93.5
Spot 39 Spot 172	90 182	8031 63685	2.5 1.6	9.0201 8.9540	1.0 1.0	5.1267 5.0053	1.5 1.5	0.3355 0.3252	1.1 1.2	0.76 0.77	1865.2 1815.0	18.3 18.6	1820.2	12.6 13.0	1812.8 1826.2	17.5 17.9	1812.8 1826.2	17.5 17.9	102.9 99.4
Spot 152	128	33565	1.9	8.9348	0.8	5.1423	1.6	0.3334	1.4	0.88	1854.7	23.2	1843.1	13.9	1830.1	14.2	1830.1	14.2	101.3
Spot 181 Spot 190	113 65	183582 92040	2.9 1.7	8.8461 8.7451	$0.8 \\ 0.8$	5.1445 5.2748	1.4 1.5	0.3302 0.3347	1.1 1.2	0.82 0.82	1839.4 1861.1	17.8 19.4	1843.5 1864.8	11.5 12.5	1848.1 1868.9	14.0 15.2	1848.1 1868.9	14.0 15.2	99.5 99.6
Spot 109	93	8639	1.7	8.7012	0.8	5.4953	1.3	0.3469	1.0	0.79	1920.0	16.8	1899.9	11.1	1877.9	14.3	1877.9	14.3	102.2
Spot 7 Spot 13	164 112	60485 36969	1.0 0.9	8.6932 8.5791	0.9 0.9	4.8994 5.5465	1.3 1.6	0.3090 0.3453	1.0 1.3	0.76 0.81	1736.0 1911.9	15.6 21.4	1802.1 1907.8	11.3 13.7	1879.6 1903.4	15.5 16.7	1879.6 1903.4	15.5 16.7	92.4 100.4
	78	26132	1.0	8.4730	0.9	5.5261	1.3	0.3397	0.9	0.73	1885.4	15.0	1904.7	10.8	1925.7	15.3	1925.7	15.3	97.9

Table B1. U-Pb zircon analyses.

							I	sotope rati	05				Apparent	ages (M	a)				
Analysis	U (ppm)	206Pb 204Pb	U/Th	206Pb* 207Pb*	± (%)	207Pb* 235U*	± (%)	206Pb* 238U	± (%)	error corr.	206Pb* 238U*	(Ma)	207Pb* 235U	(Ma)	206Pb* 207Pb*	(Ma)	Best age (Ma)	(Ma)	Conc (%)
Spot 184	255	1003287	1.7	7.8840	0.9	6.1711	1.4	0.3530	1.1	0.79	1949.0	19.3	2000.4	12.7	2053.8	15.6	2053.8	15.6	94.9
Spot 63	134	183514	2.8	6.2732	0.8	10.1576	1.3	0.4623	1.1	0.82	2449.9	21.9	2449.2	12.1	2448.6	12.8	2448.6	12.8	100.1
Spot 179	122	467501	1.3	5.4860	0.9	12.6930	1.3	0.5053	1.0	0.74	2636.3	21.0	2657.1	12.4	2673.0	14.7	2673.0	14.7	98.6
Spot 98	57	21373	2.1	5.4754	1.1	13.2750	1.6	0.5274	1.2	0.75	2730.5	27.5	2699.4	15.5	2676.2	17.9	2676.2	17.9	102.0
Spot 21	33	75824	3.4	5.4370	1.0	11.8918	3.1	0.4691	2.9	0.94	2479.8	59.4	2595.9	28.7	2687.8	17.0	2687.8	17.0	92.3

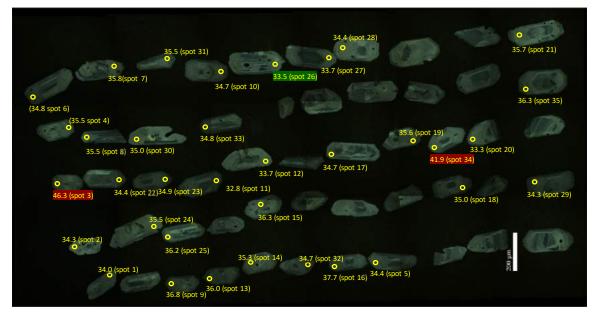


Figure B1. Sample KS014 (Walti quartz monzonite) zircon SEM-CL images and spot analyses in Ma.

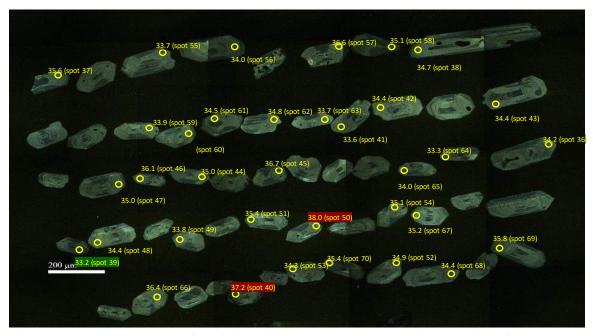


Figure B2. Sample KS025 (Trachyandesite) zircon SEM-CL images and spot analyses in Ma.

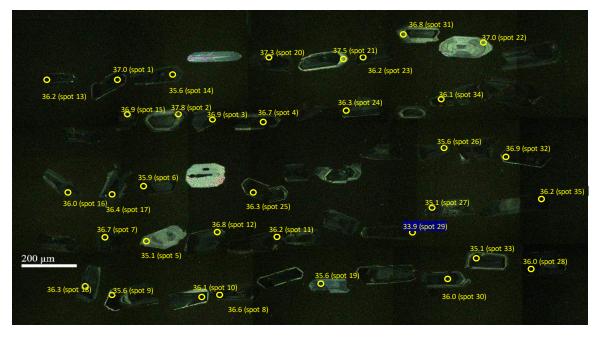


Figure B3. Sample KS044 (rhyolite porphyry) zircon SEM-CL images and spot analyses in Ma.

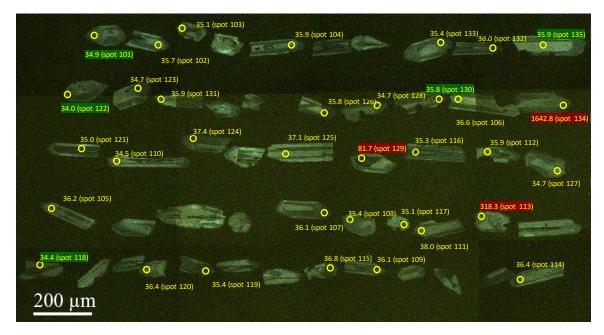


Figure B4. Sample KS050 (aphyric rhyolite) zircon SEM-CL images and spot analysis in Ma.

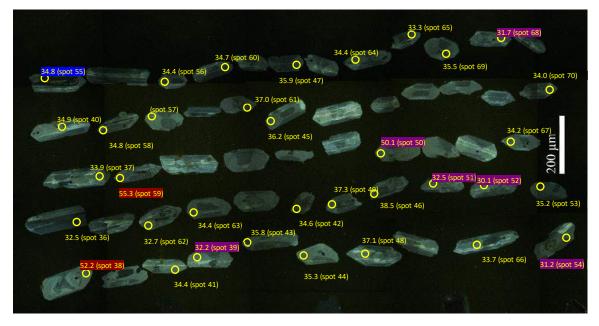


Figure B5. Sample KS051 (dacite agglomerate) zircon SEM-CL images and spot analyses in Ma.

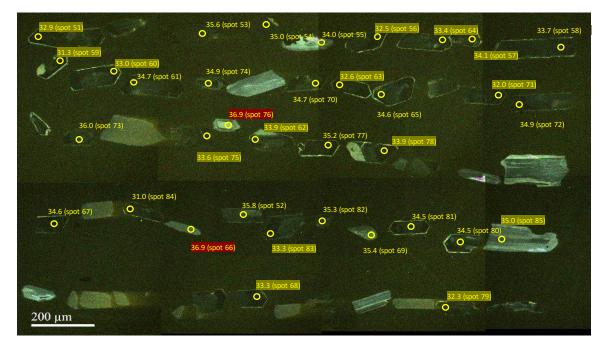


Figure B6. Sample KS126 (Walti intermediate porphyritic dikes) zircon SEM-CL images and spot analyses in Ma.

36.0 1041 194 (94) 190 101 O 33.65 [20] all o SH N O (142.) 調査の 102 112 1157 0 2 2 1 6 35.2 37.3 36.4 0 3 3 0.35.0 12 0 36.0 San Inst 0 51.8 (132) 12.05 ELAE Marine 0 0 37.5 (151) 20 200 µm 1

Figure B7. Sample KS048 (Tertiary conglomerate) zircon SEM-CL images and spot analyses in Ma.

Appendix $C - {}^{40}Ar/{}^{39}Ar$ Results

Xi C

Xi D

Xi E

Xi F

Xi G

i H

i I

0.8

1.0

1.2

1.5

2.0

3.0

4.0

10.96

10.80

10.61

10.43

10.38

10.30

10.29

0.0026

0.0035

0.0033

0.0039

0.0034

0.0034

0.0038

0.4773

0.2539

0.1712

0.1283

0.1089

0.1716

0.3708

10.7

18.1

25.8

39.1

62.2

70.1

30.9

193.1

145.6

156.2

130.8

151.5

150.5

135.8

98.7

99.3

99.5

99.6

99.7

99.5

98.9

6.6

13.4

23.2

38.1

61.7

88.3

100.0

38.329 0.038

38.000 0.024

37.435 0.019

36.847 0.012

36.664 0.009

36.324 0.008

36.076 0.016

	ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	$\pm 1\sigma$
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol))	(%)	(%)	(Ma)	(Ma)
		KS0	01, Illite, 5.54	mg, J=0.00193	528±0.02%, IC=1.01	9395±0.002527	2, NM-297B,	Lab#=6	66439-01, Argus VI		
Xi	А	0.4	13.52	0.0167	5.412	12.7	30.6	88.2	5.5	42.116	0.049
Xi	В	0.6	13.02	0.0164	1.664	20.0	31.2	96.2	14.2	44.239	0.029
Xi	С	0.8	12.20	0.0164	0.4629	35.2	31.0	98.9	29.5	42.614	0.015
Xi	D	1.0	12.15	0.0167	0.2832	43.6	30.5	99.3	48.4	42.598	0.012
Xi	Е	1.2	12.00	0.0158	0.2515	49.2	32.3	99.4	69.8	42.131	0.011
Xi	F	1.5	11.73	0.0154	0.3003	49.5	33.2	99.3	91.3	41.112	0.011
Xi	G	2.0	11.49	0.0149	0.5438	19.2	34.2	98.6	99.7	40.032	0.025
Xi	Н	3.0	12.44	-0.0044	6.395	0.8	-	84.8	100.0	37.29	0.52
	h	itegrated	l age $\pm 1\sigma$	n=8		230.2	32.0		K2O=8.17%	42.066	0.010
Р	lates	au ± 1σ	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.000
Is	ochr	on±2σ	no isochron	n=0	MSWD=1.00		40 Ar/ 36 Ar=		$0.0{\pm}0.0$	0.000	0.000
		VS	10	1 0 0010	512 0 000 IG 1 01	0.400 + 0.00056	NN 207D I	1 11 6			
Xi	٨	0.2	22.39	0.0158 0.0019	513±0.02%, IC=1.01 69.83	0.6	алын 1, мм-297В, 1 32.3	.ab#=60 7.8	0.2	6.25	0.83
Xi	A B	0.2	22.39	0.0138	38.78	1.9	32.3 47.6	46.5	1.0	35.25	0.83
Xi V:	C	0.6	15.71	0.0110	16.80	3.9	46.4	68.4	2.5	37.97	0.16
Xi Xi	D E	$\begin{array}{c} 0.8\\ 1.0\end{array}$	11.90 11.15	0.0072	4.532 2.084	14.7 22.8	71.3 83.7	88.7 94.5	8.1 16.8	37.322	0.043 0.025
Xi	ь F			0.0061					27.0	37.214	
Xi	г G	1.2 1.5	10.97	0.0044	1.678	26.7	114.7	95.5 96.9	40.0	36.996	0.022
			10.73	0.0038	1.113	34.2	132.7			36.771	
Xi V:	Н	2.0	10.51	0.0034	0.6916	38.0	150.6	98.1	54.6	36.419	0.015
Xi Xi	I J	3.0	10.42	0.0029	0.7458	33.4	174.4	97.9	67.3 78.6	36.060	0.016
	-	4.0	10.45	0.0032	0.8306	29.5	159.0	97.7	78.6	36.075	0.017
Xi	K L	5.0 6.0	10.48	0.0214	0.9360 1.073	19.1 11.1	23.8 44.5	97.4 97.0	85.9 90.2	36.085 35.900	0.027 0.040
			10.47	0.0115							
	M	7.0	10.54	0.0038	1.391	8.0	133.8	96.1	93.2	35.797	0.054
	N	15.0	11.16	0.0024	3.760	17.7	215.1	90.0	100.0	35.533	0.034
		-	l age $\pm 1\sigma$	n=14	MOND ACC	261.6	89.1		K2O=10.00%	36.380	0.011
		au ± 1σ	steps L-N	n=3	MSWD=26.56		40 25		14.1	35.71	0.120
Is	ochr	on±2σ	steps L-N	n=3	MSWD=1.02		$^{40}Ar/^{36}Ar =$		258.4 ± 4.7	36.020	0.046
		KSO	29, Illite, 4.96	mg, J=0.0019:	571±0.02%, IC=1.01	9427±0.002535	4, NM-297C, 1	Lab#=6	6447-01, Argus VI		
Xi	А	0.4	7.764	0.0061	6.193	2.2	84.2	76.4	0.8	21.11	0.18
Xi	В	0.6	11.78	0.0029	1.789	4.5	177.8	95.5	2.5	39.83	0.10
	~	0.0	10.07	0.000	o 1550	40 -	100.1				0.000

Table C1. ⁴⁰Ar/³⁹Ar analytical data, bulk grain step heating results.

ID	D Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	$\pm 1\sigma$
	(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol))	(%)	(%)	(Ma)	(Ma)
	.		0			1465		W20 10 400/	26.602	0.000
DI4	0	d age $\pm 1\sigma$	n=9	MCWD-192.49	263.3	146.5		K2O=10.42%		0.009
	teau $\pm 1\sigma$	steps H-I	n=2	MSWD=183.48		40 . 36 .		38.3	36.27	0.101
Isoci	hron±2σ	no isochron	n=0	MSWD=1.00		40 Ar/ 36 Ar=		0.0 ± 0.0	0.00	0.00
	KS	099, Illite, 4.41 1	mg, J=0.0019	371±0.02%, IC=1.03	7222±0.002403	4, NM-297B,	Lab#=6	6430-01, Argus VI		
Xi D	1.0	337.2	0.0401	1104.3	1.7	12.7	3.2	1.9	38.2	2.9
Xi E	1.2	96.62	0.0186	295.1	1.8	27.5	9.7	3.8	33.08	0.97
Xi F	1.5	47.24	0.0561	131.9	2.0	9.1	17.5	6.0	29.08	0.46
Xi G	2.0	24.55	0.0447	52.69	3.2	11.4	36.6	9.6	31.55	0.24
Xi H	3.0	15.80	0.0378	17.19	6.9	13.5	67.9	17.1	37.62	0.10
Xi I	4.0	13.11	0.0215	3.637	19.6	23.8	91.8	38.7	42.155	0.031
Xi J	5.0	12.00	0.0186	0.7316	44.6	27.4	98.2	87.7	41.279	0.055
Xi K	6.0	10.37	0.0299	0.9158	10.5	17.0	97.4	99.2	35.452	0.042
Xi L	7.0	8.935	0.0180	1.899	0.7	28.4	93.7	100.0	29.43	0.60
	Integrate	d age ± 1σ	n=9		91.1	21.1		K2O=4.09%	39.600	0.067
Plat	eau ± 1σ	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.000
Isoc	hron±2σ	no isochron	n=0	MSWD=1.00		40Ar/36Ar=		$0.0{\pm}0.0$	0.000	0.000
	KS	099, Illite, 4.92	mg, J=0.0019	517±0.02%, IC=1.03	4801±0.003132	2, NM-297B, 1	Lab#=66	5431-01, Argus VI		
Xi A		181.8	0.0068	608.5	5.0	75.0	1.1	3.0	7.1	2.2
Xi B	2.0	44.20	0.0129	118.1	14.4	39.6	21.0	11.7	32.87	0.40
Xi C		15.85	0.0111	15.33	18.2	46.2	71.4	22.8	39.986	0.073
Xi D	3.0	12.18	0.0100	2.328	39.4	50.9	94.4	46.6	40.579	0.020
Xi E	3.5	11.38	0.0092	0.5188	52.6	55.5	98.7	78.4	39.668	0.013
Xi F	3.6	10.98	0.0094	0.1964	25.5	54.5	99.5	93.9	38.599	0.022
Xi G	3.8	10.71	0.0024	0.1602	8.2	210.3	99.6	98.8	37.689	0.060
Xi H	3.9	10.40	-0.0097	0.1048	1.9	-	99.7	100.0	36.63	0.24
	Integrate	d age ± 1σ	n=8		165.1	54.8		K2O=6.61%	38.061	0.075
Plat	teau $\pm 1\sigma$	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.000
Isoc	hron±2σ	no isochron	n=0	MSWD=1.00		40 Ar/ 36 Ar=		0.0 ± 0.0	0.000	0.000
V' F				575±0.02%, IC=1.019					20.07	0.00
Xi B		56.20	0.0062	170.3	0.9	82.3	10.4	0.4	20.85	0.90
Xi C		43.42	0.0336	115.8	1.0	15.2	21.2	0.8	32.66	0.74
Xi D		24.03	0.0270	50.38	2.0	18.9	38.0	1.7	32.46	0.36
Xi E		16.34	0.1081	23.33	3.1	4.7	57.8	3.0	33.54	0.20
Xi F		13.92	0.1884	13.69	4.3	2.7	71.0	4.9	35.09	0.13
Xi G		12.75	0.1608	8.974	7.1	3.2	79.3	7.9	35.855	0.085
Xi H		11.69	0.0247	4.990	12.2	20.7	87.4	13.1	36.239	
Xi J		11.00	0.0069	2.423	23.9	74.1	93.5	23.4	36.462	
Xi K		10.78	0.0053	1.827	25.9	96.3	95.0 05.2	34.6	36.322	
Xi L Xi M		10.68	0.0054	1.727	33.3	94.3	95.2	48.9	36.047	
× 1 N/		10.57 10.57	0.0026 0.0036	1.514 1.666	28.6 22.0	194.8 141.3	95.8 95.3	61.2 70.7	35.893 35.736	
		111 57	0.0036	1 666	770	141 3	un 4	/0 /	17 / 16	0.075
Xi N										
	6.0	10.81 10.86	0.0050 0.0052 0.0070	2.549 2.832	16.3 11.6	98.2 72.4	93.0 92.3	77.7 82.7	35.659 35.554	0.035

Table C1. ⁴⁰Ar/³⁹Ar analytical data, bulk grain step heating results.

ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	$\pm 1\sigma$
	(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)
Q	8.0	11.28	0.0067	4.261	10.3	76.3	88.8	87.1	35.540	0.051
Ŕ	10.0	11.74	0.0100	5.853	12.7	51.3	85.3	92.6	35.495	0.053
S	15.0	12.62	0.0117	8.993	17.2	43.6	78.9	100.0	35.318	0.049
		l age $\pm 1\sigma$	n=17		232.2	30.6		K2O=9.61%	35.762	0.013
	au±1σ	steps O-S	n=5	MSWD=8.30	68.038			29.3	35.54	0.058
	ron±2σ	steps O-S	n=5	MSWD=1.00		$^{40}Ar/^{36}Ar =$	= 2	282.1±2.4	35.748	
		1								
	KS	023, Hornblend	de, 8.17 mg, J=	=0.0019533±0.02%,	IC=1.019151±0	0.0025435, NN	л-297В,	Lab#=66429-01, A	rgus VI	
Xi A	1.5	64.94	2.119	193.4	1.0	0.24	12.2	2.3	28.21	0.92
Xi B	2.0	18.92	1.770	35.43	0.7	0.29	45.4	3.8	30.48	0.67
Xi C	2.5	15.62	1.057	25.00	0.6	0.48	53.2	5.2	29.51	0.67
Xi D	3.0	14.38	1.239	21.77	0.6	0.41	56.0	6.6	28.56	0.69
Xi E	3.5	13.97	2.769	17.68	1.1	0.18	64.2	9.0	31.83	0.41
Xi F	4.0	11.30	4.661	6.828	4.1	0.11	85.5	18.2	34.34	0.12
G	4.5	10.76	5.042	4.265	6.8	0.10	92.1	33.5	35.207	0.071
Н	5.0	10.81	4.920	4.642	4.5	0.10	91.0	43.7	34.96	0.10
Ι	5.5	10.96	4.721	5.554	3.2	0.11	88.5	50.9	34.47	0.15
J	6.0	10.80	4.794	5.022	3.3	0.11	89.9	58.3	34.50	0.13
K	7.0	10.59	5.052	3.488	9.5	0.10	94.2	79.7	35.415	0.055
L	15.0	10.42	4.134	3.979	9.0	0.12	92.0	100.0	34.030	0.056
h	ntegrated	l age ± 1σ	n=12		44.4	0.11		K2O=1.07%	34.317	0.041
Platea	au±1σ	steps G-L	n=6	MSWD=71.04	36.324			81.8	34.82	0.262
Isochr	ron±2σ	steps G-L	n=6	MSWD=81.78		⁴⁰ Ar/ ³⁶ Ar=	- 4	43.8±32.9	33.387	0.197
	1/5 004	E		10500.0000/ 10.1						
Xi A	1.5	5, Hornblende, ² 56.80	0.8961 0.00	19508±0.02%, IC=1 170.8	.01921±0.0025 0.6	394, NM-2971 0.57	в, Lab#= 11.3	=66436-01, Argus V 1.8	22.7	1.2
Xi B	2.0	23.63	1.404	52.35	0.0	0.37	35.0	3.0	22.7	1.2
Xi C	2.0	23.03 18.71	3.280	32.33	0.4	0.30	50.2	5.7	33.29	0.52
Xi D	3.0	13.01	3.204	11.22	4.3	0.16	76.5	18.0	35.30	0.32
i E	3.5	11.47	3.110	5.624	11.3	0.16	87.7	50.1	35.654	0.054
i F	4.0	10.97	3.168	3.883	10.2	0.16	91.9	79.2	35.736	0.054
Xi G	4.5	11.16	3.555	5.018	5.2	0.10	89.3	94.0	35.343	
Xi H	5.0	10.89	3.601	5.175	1.0	0.14	88.7	96.8	34.22	0.41
Xi L	15.0	9.107	1.874	2.515	1.0	0.27	93.5	100.0	30.18	0.33
		l age $\pm 1\sigma$	n=9	2.010	35.0	0.16	,	K2O=1.64%	35.003	0.046
	au±1σ	steps E-F	n=2	MSWD=1.12	21.439	0110		61.2	35.70	0.041
	ron±2σ	no isochron		MSWD=1.28	21.137	$^{40}Ar/^{36}Ar =$		0.0±0.0	0.000	0.000
isociii	011-20	no isocinon	по	MISWD 1.20		111/ 111		0.0±0.0	0.000	0.000
	KS1	14A. Hornbler	nde. 2.33 mg. J	=0.0019555±0.02%	LC=1.019262±	=0.0025354. N	M-297C	. Lab#=66449-01.	Argus VI	
Xi A	1.5	51.55	1.096	142.7	0.9	0.47	18.4	5.2	33.61	0.87
В	2.5	14.02	0.6337	13.20	1.7	0.81	72.5	14.4	36.05	0.28
C	3.5	13.02	3.175	10.21	3.3	0.16	78.8	32.6	36.43	0.16
D	4.0	11.38	4.216	5.582	4.2	0.12	88.5	55.9	35.80	0.11
Ē	4.5	11.61	4.563	6.293	3.2	0.11	87.2	73.7	36.00	0.14
F	5.0	11.88	4.469	7.299	2.0	0.11	84.9	84.9	35.85	0.22
G	6.0	11.85	3.049	7.320	0.8	0.17	83.8	89.4	35.29	0.46

Table C1. ⁴⁰Ar/³⁹Ar analytical data, bulk grain step heating results.

				urytreur u		n step neu	ing resul	.5•			
]	ID	Power	$^{40}\mathrm{Ar}/^{39}\mathrm{Ar}$	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar_K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	$\pm 1\sigma$
		(Watts)			$(x \ 10^{-3})$	(x 10 ⁻¹⁵ mol)	(%)	(%)	(Ma)	(Ma)
	Н	7.0	11.23	1.567	3.914	0.8	0.33	90.8	93.8	36.18	0.51
	Ι	15.0	10.79	1.265	2.841	1.1	0.40	93.2	100.0	35.64	0.33
	In		l age $\pm 1\sigma$	n=9		18.0	0.16		K2O=1.52%	35.849	0.083
Pla		$u \pm 1\sigma$	steps B-I	n=8	MSWD=2.12	17.1			94.8	35.97	0.10
		on±2σ	steps B-I	n=8	MSWD=1.28		$^{40}Ar/^{36}Ar =$	2	315.3±7.8	35.55	0.18
			1								
		KS	135 Hornhlen	da 8.08 mg I-	0.0019537±0.02%,	IC-1 016167+0	0026208 NM	12078	$I_{ab} = -66424.01$ A	raus VI	
Xi	Δ	2.0	24.99	3.866	52.88	5.9	0.13	38.7	18.2	34.38	0.23
	B	4.0	11.80	4.517	7.822	7.4	0.15	83.5	41.2	35.031	0.078
	C	4.5	10.92	4.952	4.216	10.9	0.11	92.3	75.0	35.816	0.047
	Ē	5.0	10.99	4.957	4.277	8.1	0.10	92.2	100.0	35.988	0.061
			$lage \pm 1\sigma$	n=4		32.3	0.11		K2O=0.79%	35.418	0.052
Pla		$u \pm 1\sigma$	steps C-E	n=2	MSWD=4.98	19.017			58.8	35.88	0.083
		on±2σ	no isochron		MSWD=1.12		$^{40}Ar/^{36}Ar =$		$0.0{\pm}0.0$	0.000	0.000
				•							
		KS	144. Hornblen	de 607 mø L⊨	0.0019542±0.01%,	IC=1 019086+6) 0025474 NM	-297B	Lab#=66427-01 A	rous VI	
Xi	А	1.5	107.4	2.069	328.2	0.2	0.25	9.8	0.7	37.4	3.1
	В	2.0	32.29	2.058	79.79	0.1	0.25	27.5	0.9	31.5	7.0
	С	3.0	20.12	4.234	36.84	0.2	0.12	47.6	1.4	34.0	2.6
	D	3.5	14.86	4.906	18.35	1.2	0.10	66.2	5.5	34.96	0.39
	Е	4.0	12.39	5.058	9.117	5.4	0.10	81.6	24.1	35.92	0.10
	F	4.5	11.43	5.085	5.717	8.9	0.10	88.9	54.7	36.089	0.065
	G	5.0	11.10	5.110	4.722	7.6	0.100	91.2	80.8	35.978	0.069
	Η	5.5	11.10	5.117	4.668	3.8	0.100	91.4	94.0	36.04	0.11
	Ι	6.0	11.59	5.162	6.473	0.8	0.099	87.1	96.9	35.88	0.48
	J	7.0	11.71	5.091	7.041	0.6	0.10	85.8	99.1	35.71	0.61
	Κ	15.0	11.73	5.074	8.639	0.3	0.10	81.8	100.0	34.1	1.4
		-	l age ± 1σ	n=11		29.1	0.10		K2O=0.94%	35.935	0.055
Pla	atea	$u \pm 1\sigma$	steps D-K	n=8	MSWD=1.70	28.7			98.6	36.005	0.052
Iso	ochr	on±2σ	steps D-K	n=8	MSWD=1.12		$^{40}Ar/^{36}Ar =$	4	282.5 ± 5.6	36.210	0.096
		KS13		mg, J=0.0019	575±0.02%, IC=1.0	16453±0.00260	031, NM-297C,				
Xi		1.0	27.42	0.0488	63.52	6.1	10.5	31.5	4.2	30.73	0.26
	В	2.0	12.19	0.0110	7.689	12.4	46.2	81.4	12.7	35.180	0.054
	C	2.5	10.71	0.0051	1.834	15.3	100.3	94.9	23.2	36.039	
	D	3.0	10.48	0.0083	1.144	16.6	61.4	96.8	34.6	35.968	0.028
	E	4.0	10.54	0.0193	1.305	30.2	26.4	96.4	55.3	36.005	
	F u	4.5	10.64	0.0343	1.894	22.8	14.9	94.8	70.9 82.4	35.758	
	H	5.0	10.90	0.0470	2.998	16.8	10.9 26.8	91.9 04.0	82.4 84.3	35.537	
	I J	5.5 6.0	10.50	0.0190	1.813	2.7	26.8	94.9 04 0	84.3 87.2	35.35	0.14
	J L	6.0 10.0	10.56 10.49	0.0268	1.817 1.616	4.3 18.7	19.0 14.5	94.9 95.5	87.2 100.0	35.562 35.533	
				0.0353 n=10	1.010	18.7	14.3 20.5	<i>,</i> ,,,	K2O=7.87%	35.535	
DI.		iu ± 1σ	$l age \pm 1\sigma$	n=10 n=4	MSWD-0.57	42.426	20.5		29.1	35.53	0.017
			steps H-L		MSWD=0.57	42.420	⁴⁰ Ar/ ³⁶ Ar=				
180	ocnr	on±2σ	steps H-L	n=4	MSWD=0.83		Ar/Ar=	4	297.2±9.0	35.519	0.072

Table C1. ⁴⁰Ar/³⁹Ar analytical data, bulk grain step heating results.

	ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	$\pm 1\sigma$
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)	I	(%)	(%)	(Ma)	(Ma)
		KS	143, Biotite, .91	mg, J=0.0019	9502±0.02%, IC=1.0	0193±0.0025325	, NM-297B,	Lab#=66	6434-01, Argus VI		
Xi	А	1.0	70.99	1.807	73.40	0.9	0.28	69.7	5.4	168.7	1.1
Xi	В	1.5	116.3	0.9135	31.56	1.3	0.56	92.0	12.5	347.2	1.5
Xi	С	2.0	142.1	0.4051	14.09	2.0	1.3	97.1	23.7	436.4	1.0
Xi	D	2.5	151.2	0.2115	8.209	2.1	2.4	98.4	35.8	466.3	1.1
Xi	Е	3.0	153.0	0.1744	5.944	1.9	2.9	98.9	46.4	473.2	1.1
i	F	3.5	149.5	0.2242	5.170	1.7	2.3	99.0	56.3	464.2	1.3
i	G	4.0	150.2	0.2015	3.746	1.9	2.5	99.3	67.1	467.3	1.0
i	Η	4.3	150.3	0.1464	3.408	1.3	3.5	99.3	74.8	467.9	1.6
i	Ι	4.5	149.3	0.1453	4.154	1.1	3.5	99.2	80.8	464.5	2.0
i	J	5.0	148.8	0.1946	4.207	1.1	2.6	99.2	87.2	463.2	2.0
i	Κ	6.0	149.9	0.1426	3.594	2.3	3.6	99.3	100.0	466.6	1.0
	I	ntegrated	l age ± 1σ	n=11		17.6	1.5		K2O=3.81%	440.36	0.41
Р	lates	au $\pm 1\sigma$	steps F-K	n=6	MSWD=1.59	9.4			53.6	466.10	0.69
Is	ochi	ron±2σ	no isochron	n=0	MSWD=1.02		40 Ar/ 36 Ar	=	0.0 ± 0.0	0.0	0.0

Table C1. ⁴⁰Ar/³⁹Ar analytical data, bulk grain step heating results.

Notes:

Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions. Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties.

Integrated age calculated by summing isotopic measurements of all steps.

Integrated age error calculated by quadratically combining errors of isotopic measurements of all steps. Plateau age is inverse-variance-weighted mean of selected steps.

Plateau age error is inverse-variance-weighted mean error (Taylor, 1982) times root MSWD where MSWD>1. Plateau error is weighted error of Taylor (1982).

Decay constants and isotopic abundances after Steiger and Jäger (1977).

symbol preceding sample ID denotes analyses excluded from plateau age calculations.

Weight percent K₂O calculated from ³⁹Ar signal, sample weight, and instrument sensitivity.

Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard at 28.201 Ma

Decay Constant (LambdaK (total)) = 5.463e-10/a

Correction factors:

 $({}^{39}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}}\!=\!0.0007593\!\pm\!0.000008$

 $({}^{36}\text{Ar}/{}^{37}\text{Ar})_{Ca} = 0.0002772 \pm 0.0000010$

$$({}^{38}\text{Ar}/{}^{39}\text{Ar})_{\rm K} = 0.01271$$

 $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\rm K} = 0.007204 \pm 0.00046$

ID	Power	$^{40}Ar/^{39}Ar$	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}Ar_{\rm K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
	(Watts)	111, 111		$(x \ 10^{-3})$	$(x \ 10^{-15} \text{ mol})$	il cu			-	(Ma)
	(maria)			(*****)	(A 10 mor)		(, 0)	(70)	(1114)	(1114)
	K800	3 Plagiaslasa	I-0.0010577+	0 0 29% IC-1 00027	1±0.0000714 NI	4 207C Lab#-	66445 01	A ratio VI		
А	0.2	66.96	4.511	196.4	0.114	0.11	13.8	11.6	33.04	0.94
В	0.3	20.40	2.945					20.6		0.56
С	0.4	17.61	1.804	26.05	0.052		57.1	25.9	35.72	0.79
D	3.0	17.32	5.032	25.81	0.728	0.10	58.3	100.0	35.97	0.13
In	tegrated	age ± 1σ	n=4		0.983	0.11			35.55	0.16
latea	$u \pm 1\sigma$	steps B-D	n=3	MSWD=0.79	0.869			88.4	35.93	0.12
ochr	on±2σ	steps B-D	n=3	MSWD=0.05		$^{40}Ar/^{36}Ar =$	277.3	±14.3	37.5	1.3
	KS00	3. Plagioclase	I= 0 0019577+	0.02% IC=1.00037	1+0.0009714 NN	M-297C Lab#=	66445-02	Arous VI		
А									35.14	0.79
В	0.3	17.58	2.976	25.95	0.118	0.17	57.7	26.3	36.08	0.44
С	0.4	15.99	3.405	21.33	0.447	0.15	62.3	72.5	35.42	0.16
D	3.0	12.89	4.968	10.54	0.266	0.10	79.0	100.0	36.25	0.17
In	tegrated	age ± 1σ	n=4		0.967	0.13			35.69	0.15
Plat	eau ± 1σ	steps A-D	n=4	MSWD=4.59	0.967			100.0	35.83	0.24
		-	n=4			$^{40}Ar/^{36}Ar =$	2.92.7	7±1.6		0.15
							_,			
	KS 00	3 , Plagioclase,	J=0.0019577±	0.02%, IC=1.00037	1±0.0009714, NM	M-297C, Lab#=	66445-03	, Argus VI		
А	0.2	96.12	4.523	297.4	0.078	0.11	9.0	7.2	30.7	1.3
В	0.3	25.99	5.093	55.45	0.108	0.10	38.5	17.2	35.68	0.50
С	0.4	19.70	3.719	34.00	0.033	0.14	50.5	20.2	35.4	1.2
D	3.0	18.55	5.007	30.01	0.865	0.10	54.4	100.0	35.93	0.12
In	tegrated	age ± 1σ	n=4		1.085	0.10			35.51	0.15
latea	$u \pm 1\sigma$	steps B-D	n=3	MSWD=0.20	1.007			92.8	35.91	0.12
ochr	on±2σ	steps B-D	n=3	MSWD=0.15		$^{40}Ar/^{36}Ar =$	292.0	6±5.8	36.21	0.62
	KS 00	3, Plagioclase,	J=0.0019577±	0.02%, IC=1.00037	1±0.0009714, NM	M-297C, Lab#=	66445-04	, Argus VI		
А	0.2	53.17	5.448	148.6	0.047	0.094	18.3	17.5	34.6	1.4
В	0.3	23.36	3.104	48.22	0.045	0.16	40.1	34.5	33.32	0.96
С	0.4	20.07	3.224	36.60	0.024	0.16	47.4	43.6	33.9	1.5
D	3.0	15.89	6.118	21.66	0.150	0.083	62.9	100.0	35.58	0.32
In	tegrated	age ± 1σ	n=4		0.267	0.098			34.87	0.37
latea	$u \pm 1\sigma$	steps A-D	n=4	MSWD=2.09	0.267			100.0	35.27	0.42
ochr	on±2σ	steps A-D	n=4	MSWD=2.34		⁴⁰ Ar/ ³⁶ Ar=	291.8	8±3.1	35.66	0.42
	KS 00	3, Plagioclase.	J=0.0019577±	0.02%, IC=1.00037	1±0.0009714. NM	M-297C. Lab#=	66445-05	, Argus VI		
А	0.2	75.87	4.009	224.8	0.072	0.13	12.9	12.5	34.8	1.2
В	0.3	27.17	2.648	60.18	0.051	0.19	35.3	21.4	34.12	0.90
С	0.4	23.61	2.137	47.16	0.092	0.24	41.7	37.4	34.99	0.57
D	3.0	19.38	5.375	33.43	0.360	0.095	51.3	100.0	35.41	0.21
T.,	tegrated	age ± 1σ	n=4		0.575	0.11			35.15	0.23
III										
	C D D In latea ochr A B C D In Plat Isocl A B C D In latea ochr A B C D In latea ochr A B C D In latea A A B C D In latea A B C D In latea A A B C D I In latea A A B C D I In latea A A B C D I In latea A A B C D I In latea A A A B C D I In latea A A B I In latea A A B I In latea A A B I In latea A A B I I In In latea A A B I In latea A A B I In In latea A A B I In In In In In In In In In In In In I	KS 00 A 0.2 B 0.3 C 0.4 D 3.0 Integrated lateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 00 A 0.2 B 0.3 C 0.4 D 3.0 Integrated Plateau $\pm 1\sigma$ Isochron $\pm 2\sigma$ KS 00 A 0.2 B 0.3 C 0.4 D 3.0 Integrated lateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 00 A 0.2 B 0.3 C 0.4 D 3.0 Integrated lateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 00 A 0.2 B 0.3 C 0.4 D 3.0 Integrated lateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 00	KS 003, Plagioclase, A 0.2 66.96 B 0.3 20.40 C 0.4 17.61 D 3.0 17.32 Integrated age $\pm 1\sigma$ Iateau $\pm 1\sigma$ steps B-D ochron $\pm 2\sigma$ steps B-D ochron $\pm 2\sigma$ steps B-D ochron $\pm 2\sigma$ steps B-D D 3.0 17.58 C 0.4 15.99 D 3.0 12.89 Integrated age $\pm 1\sigma$ Plateau $\pm 1\sigma$ steps A-D Isochron $\pm 2\sigma$ steps A-D Isochron $\pm 2\sigma$ steps B-D C 0.4 19.70 D 3.0 18.55 Integrated age $\pm 1\sigma$ Iateau $\pm 1\sigma$ steps B-D ochron $\pm 2\sigma$ steps B-D ochron $\pm 2\sigma$ steps B-D ochron $\pm 2\sigma$ steps A-D Integrated age $\pm 1\sigma$ Iateau $\pm 1\sigma$ Integrated age $\pm 1\sigma$ Iateau $\pm 1\sigma$ Integrated age $\pm 1\sigma$ Iateau $\pm 1\sigma$	KS 003, Plagioclase, J=0.0019577# A 0.2 66.96 4.511 B 0.3 20.40 2.945 C 0.4 17.61 1.804 D 3.0 17.32 5.032 Integrated age ± 1σ n=4 lateau ± 1σ steps B-D n=3 ochron±2σ steps B-D n=3 ochron±2σ steps B-D n=3 KS 003, Plagioclase, J=0.0019577# A 0.2 53.89 3.629 B 0.3 17.58 2.976 C 0.4 15.99 3.405 D 3.0 12.89 4.968 Integrated age ± 1σ n=4 Plateau ± 1σ steps A-D n=4 Isochron±2σ steps A-D n=4 Isochron±2σ steps B-D n=3 0.2 96.12 4.523 B 0.3 25.99 5.007 Integrated age ± 1σ n=4 Isochron±2σ steps B-D n=3 ochron±2σ steps B-D n=3 <td>KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.00037 A 0.2 66.96 4.511 196.4 B 0.3 20.40 2.945 36.28 C 0.4 17.61 1.804 26.05 D 3.0 17.32 5.032 25.81 Integrated age ± 1σ n=4 10 11.804 26.05 Ochron±2σ steps B-D n=3 MSWD=0.79 ochron±2σ steps B-D n=3 MSWD=0.79 ochron±2σ steps B-D n=3 MSWD=0.05 KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.00037 A 0.2 53.89 3.629 150.0 B 0.3 17.58 2.976 25.95 C 0.4 15.99 3.405 21.33 D 3.0 12.89 4.968 10.54 Integrated age ± 1σ n=4 MSWD=4.59 Isochron±2σ Steps A-D n=4 MSWD=5.43 KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.00037 A <</td> <td>KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NN A 0.2 66.96 4.511 196.4 0.114 B 0.3 20.40 2.945 36.28 0.089 C 0.4 17.61 1.804 26.05 0.052 D 3.0 17.32 5.032 25.81 0.728 Integrated age ± 1σ n=4 0.983 1 1.804 26.05 0.136 B 0.3 17.52 5.032 25.81 0.728 1 Integrated age ± 1σ n=4 0.983 1 0.869 0 0.136 B 0.3 17.58 2.976 25.95 0.118 0.266 Integrated age ± 1σ n=4 0.967 1 3.0 12.89 4.968 10.54 0.266 Integrated age ± 1σ n=4 MSWD=4.59 0.967 I Isochron±2σ steps A-D n=4 MSWD=5.43 KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NN A 0.2</td> <td>KS 003, Plagicclase, J=0.0119577±0.02%, IC=1.000371±0.009714, NM-297C, Lab#= A 0.2 66.96 4.511 196.4 0.114 0.11 B 0.3 20.40 2.945 36.28 0.089 0.17 C 0.4 17.61 1.804 26.05 0.052 0.28 D 3.0 17.32 5.032 25.81 0.728 0.10 Integrated age ± 1σ n=4 0.983 0.11 Itesau ± 1σ steps B-D n=3 MSWD=0.79 0.869 ochron±2σ steps B-D n=3 MSWD=0.05 40Ar/³⁶Ar= KS003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NM-297C, Lab#= A 0.2 53.89 3.629 150.0 0.136 0.14 B 0.3 17.58 2.976 25.95 0.118 0.17 C 0.4 15.99 3.405 21.33 0.447 0.15 D 3.0 12.89 4.968 10.54 0.266 0.10 Integrated ag</td> <td>KS 003, Plagioclase, I=0.0019577±0.02%, IC=1.000371±0.009714, NM-297C, Lab#=66445.01 A 0.2 66.96 4.511 196.4 0.114 0.11 13.8 B 0.3 20.40 2.945 36.28 0.089 0.17 48.6 C 0.4 17.61 1.804 26.05 0.052 0.28 57.1 D 3.0 17.32 5.032 25.81 0.728 0.10 58.3 Integrated age ± 1σ n=4 0.983 0.11 1.44 1.4 1.4 1.4 Iateau ± 1σ steps B-D n=3 MSWD=0.05 40 Ar/³⁶ Ar 277.3 KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.009714, NM-297C, Lab#=66445.03 A 0.2 53.89 3.629 150.0 0.136 0.14 18.3 B 0.3 17.58 2.976 2.5.95 0.118 0.17 57.7 C 0.4 15.99 3.405 21.33 0.447 0.15 62.3 D 3.0</td> <td>KS 603, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NM-297C, Lab#=66445-01, Argus VI A 0.2 66.96 4.511 196.4 0.114 0.11 13.8 11.6 B 0.3 20.40 2.945 36.28 0.089 0.17 48.6 20.6 C 0.4 17.61 1.804 26.05 0.52 2.28 57.1 25.9 D 3.0 17.32 5.032 25.81 0.728 0.10 58.3 100.0 Integrated age ± 1σ n=4 0.983 0.11 1 1.8 8.4 ochron±2σ steps B-D n=3 MSWD=0.05 40Ar/³⁶Ar= 277.3±14.3 KS003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NM-297C, Lab#=66445-02, Argus VI A 0.2 53.89 3.629 150.0 0.136 0.14 18.3 14.1 B 0.3 17.58 2.976 25.95 0.118 0.17 57.7 26.3 C 0.4 15.99 3.405 1.23 0.47</td> <td>KS003, Plagioclase, J=0.0019577=0.02%, IC=1.000371+00009714, NM-297C, Lab#=66445-01, Argus VI A 0.2 66.96 4.511 196.4 0.114 0.11 13.8 11.6 33.04 B 0.3 20.40 2.945 36.28 0.089 0.17 48.6 20.6 35.72 D 3.0 17.32 5.032 25.81 0.728 0.10 58.3 100.0 35.97 Integrated age ± 1σ n=4 0.983 0.11 35.55 1ateau ± 1σ steps B=D n=3 MSWD=0.79 0.869 88.4 35.93 ochron±2σ steps B=D n=3 MSWD=0.79 0.869 88.4 35.93 ochron±2σ steps B=D n=3 MSWD=0.70 0.136 0.14 18.3 14.1 35.14 B 0.3 17.58 2.976 25.95 0.118 0.17 77.7 26.3 36.09 D 3.0 12.89 4.968 10.54 0.266 0.10 79.0 100.0</td>	KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.00037 A 0.2 66.96 4.511 196.4 B 0.3 20.40 2.945 36.28 C 0.4 17.61 1.804 26.05 D 3.0 17.32 5.032 25.81 Integrated age ± 1σ n=4 10 11.804 26.05 Ochron±2σ steps B-D n=3 MSWD=0.79 ochron±2σ steps B-D n=3 MSWD=0.79 ochron±2σ steps B-D n=3 MSWD=0.05 KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.00037 A 0.2 53.89 3.629 150.0 B 0.3 17.58 2.976 25.95 C 0.4 15.99 3.405 21.33 D 3.0 12.89 4.968 10.54 Integrated age ± 1σ n=4 MSWD=4.59 Isochron±2σ Steps A-D n=4 MSWD=5.43 KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.00037 A <	KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NN A 0.2 66.96 4.511 196.4 0.114 B 0.3 20.40 2.945 36.28 0.089 C 0.4 17.61 1.804 26.05 0.052 D 3.0 17.32 5.032 25.81 0.728 Integrated age ± 1σ n=4 0.983 1 1.804 26.05 0.136 B 0.3 17.52 5.032 25.81 0.728 1 Integrated age ± 1σ n=4 0.983 1 0.869 0 0.136 B 0.3 17.58 2.976 25.95 0.118 0.266 Integrated age ± 1σ n=4 0.967 1 3.0 12.89 4.968 10.54 0.266 Integrated age ± 1σ n=4 MSWD=4.59 0.967 I Isochron±2σ steps A-D n=4 MSWD=5.43 KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NN A 0.2	KS 003, Plagicclase, J=0.0119577±0.02%, IC=1.000371±0.009714, NM-297C, Lab#= A 0.2 66.96 4.511 196.4 0.114 0.11 B 0.3 20.40 2.945 36.28 0.089 0.17 C 0.4 17.61 1.804 26.05 0.052 0.28 D 3.0 17.32 5.032 25.81 0.728 0.10 Integrated age ± 1σ n=4 0.983 0.11 Itesau ± 1σ steps B-D n=3 MSWD=0.79 0.869 ochron±2σ steps B-D n=3 MSWD=0.05 40 Ar/ ³⁶ Ar= KS003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NM-297C, Lab#= A 0.2 53.89 3.629 150.0 0.136 0.14 B 0.3 17.58 2.976 25.95 0.118 0.17 C 0.4 15.99 3.405 21.33 0.447 0.15 D 3.0 12.89 4.968 10.54 0.266 0.10 Integrated ag	KS 003, Plagioclase, I=0.0019577±0.02%, IC=1.000371±0.009714, NM-297C, Lab#=66445.01 A 0.2 66.96 4.511 196.4 0.114 0.11 13.8 B 0.3 20.40 2.945 36.28 0.089 0.17 48.6 C 0.4 17.61 1.804 26.05 0.052 0.28 57.1 D 3.0 17.32 5.032 25.81 0.728 0.10 58.3 Integrated age ± 1σ n=4 0.983 0.11 1.44 1.4 1.4 1.4 Iateau ± 1σ steps B-D n=3 MSWD=0.05 40 Ar/ ³⁶ Ar 277.3 KS 003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.009714, NM-297C, Lab#=66445.03 A 0.2 53.89 3.629 150.0 0.136 0.14 18.3 B 0.3 17.58 2.976 2.5.95 0.118 0.17 57.7 C 0.4 15.99 3.405 21.33 0.447 0.15 62.3 D 3.0	KS 603, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NM-297C, Lab#=66445-01, Argus VI A 0.2 66.96 4.511 196.4 0.114 0.11 13.8 11.6 B 0.3 20.40 2.945 36.28 0.089 0.17 48.6 20.6 C 0.4 17.61 1.804 26.05 0.52 2.28 57.1 25.9 D 3.0 17.32 5.032 25.81 0.728 0.10 58.3 100.0 Integrated age ± 1σ n=4 0.983 0.11 1 1.8 8.4 ochron±2σ steps B-D n=3 MSWD=0.05 40Ar/ ³⁶ Ar= 277.3±14.3 KS003, Plagioclase, J=0.0019577±0.02%, IC=1.000371±0.0009714, NM-297C, Lab#=66445-02, Argus VI A 0.2 53.89 3.629 150.0 0.136 0.14 18.3 14.1 B 0.3 17.58 2.976 25.95 0.118 0.17 57.7 26.3 C 0.4 15.99 3.405 1.23 0.47	KS003, Plagioclase, J=0.0019577=0.02%, IC=1.000371+00009714, NM-297C, Lab#=66445-01, Argus VI A 0.2 66.96 4.511 196.4 0.114 0.11 13.8 11.6 33.04 B 0.3 20.40 2.945 36.28 0.089 0.17 48.6 20.6 35.72 D 3.0 17.32 5.032 25.81 0.728 0.10 58.3 100.0 35.97 Integrated age ± 1σ n=4 0.983 0.11 35.55 1ateau ± 1σ steps B=D n=3 MSWD=0.79 0.869 88.4 35.93 ochron±2σ steps B=D n=3 MSWD=0.79 0.869 88.4 35.93 ochron±2σ steps B=D n=3 MSWD=0.70 0.136 0.14 18.3 14.1 35.14 B 0.3 17.58 2.976 25.95 0.118 0.17 77.7 26.3 36.09 D 3.0 12.89 4.968 10.54 0.266 0.10 79.0 100.0

	Power	$^{40}\mathrm{Ar}/^{39}\mathrm{Ar}$	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar_K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1c
	(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma
Isoch	ron±2σ	steps A-D	n=4	M SWD=0.93		⁴⁰ Ar/ ³⁶ Ar=	294.1	1±1.8	35.49	0.31
	VSA	0 2 pl : 1	1.0.0010577.	0.000/ 10/ 1.00007	1 . 0 0 0 0 7 1 4 3 3	6007C 1 1 1				
А	0.2	50.68	J=0.0019577± 7.666	0.02%, IC=1.00037 140.0	0.036 0.0009/14, NM	0.067 0.067	-66445-06 19.6	14.7	35.4	1.5
B	0.2	27.69	8.508	56.17	0.008	0.060	42.6	18.0	42.0	4.8
C	0.4	28.53	11.38	38.61	0.000	0.000	63.3	18.7	64.1	31.9
D	3.0	14.59	6.869	17.27	0.200	0.043	68.9	100.0	35.82	0.2
	ntegrated		n=4	17.27	0.247	0.074	00.7	100.0	36.15	0.2
	au±1σ	steps A-D	n=4	MSWD=0.83	0.247	0.072		100.0	35.83	0.2
		-			0.247	40 , 36 ,	205			
Isochi	ron±2σ	steps A-D	n=4	MSWD=2.03		$^{40}Ar/^{36}Ar =$	295.	1±3.5	35.86	0.34
	KS0	03, Plagioclase,	J=0.0019577 ±	0.02%, IC=1.00037	1±0.0009714, NM	M-297C, Lab#=	66445-07	, Argus VI		
А	0.2	45.87	8.306	124.9	0.044	0.061	21.0	10.5	34.5	1.3
В	0.3	26.99	5.866	60.11	0.028	0.087	35.9	17.2	34.6	1.4
С	0.4	15.41	6.030	20.38	0.037	0.085	64.1	26.2	35.2	1.0
D	3.0	12.46	7.694	10.16	0.306	0.066	80.9	100.0	35.97	0.1
	ntegrated		n=4		0.414	0.068			35.65	0.2
	$au \pm 1\sigma$	steps A-D	n=4	MSWD=0.89	0.414			100.0	35.91	0.10
	ron±2σ	steps A-D	n=4	MSWD=0.28		⁴⁰ Ar/ ³⁶ Ar=	291.1	1±3.0	36.08	0.2
A	KS 0 0.2	03, Plagioclase, 130.3	J=0.0019577± 4.590	0.02%, IC=1.00037 408.8	1±0.0009714, NM 0.117	M-297C, Lab#= 0.11	66445-08 7.6	8, Argus VI 6.3	35.2	1.3
B C	0.3 0.4	30.92 20.14	3.618 2.588	72.04 35.14	$0.140 \\ 0.072$	0.14 0.20	32.1 49.5	13.8 17.7	35.32 35.43	0.49
			2.588		0.072			13.8	35.32	0.49 0.6
C D	0.4	20.14 19.08		35.14		0.20	49.5	13.8 17.7	35.32 35.43	0.49 0.60 0.09
C D I	0.4 3.0	20.14 19.08 age ± 1σ	2.588 3.985	35.14 31.80	0.072 1.53 1.86	0.20 0.13	49.5	13.8 17.7	35.32 35.43 35.597 35.54	0.49 0.60 0.09 0.12
C D I Plate	0.4 3.0 ntegrated	20.14 19.08	2.588 3.985 n=4	35.14	0.072 1.53 1.86 1.86	0.20 0.13	49.5 52.4	13.8 17.7 100.0	35.32 35.43 35.597	0.49 0.69 0.09 0.12
C D I Plate	$\begin{array}{c} 0.4\\ 3.0\\ \textbf{ntegrated}\\ \textbf{au} \pm 1\sigma\\ \textbf{ron} \pm 2\sigma \end{array}$	20.14 19.08 age ± 1o steps A-D steps A-D	2.588 3.985 n=4 n=4 n=4	35.14 31.80 MSWD=0.15 MSWD=0.13	0.072 1.53 1.86 1.86	0.20 0.13 0.13 ⁴⁰ Ar/ ³⁶ Ar=	49.5 52.4 295.1	13.8 17.7 100.0 100.0 1±0.9	35.32 35.43 35.597 35.54 35.582	0.49 0.60 0.09 0.12 0.09
C D I Plate: Isochi	0.4 3.0 ntegrated au ± 1σ ron±2σ KS 00	20.14 19.08 age ± 1o steps A-D steps A-D 03 , Plagioclase,	2.588 3.985 n=4 n=4 n=4 J=0.0019577±	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037	0.072 1.53 1.86 1.86 1.86	0.20 0.13 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297C, Lab#=	49.5 52.4 295.1	13.8 17.7 100.0 100.0 1±0.9	35.32 35.43 35.597 35.54 35.582 35.63	0.49 0.60 0.09 0.12 0.09 0.14
C D I Plate: Isoch	0.4 3.0 ntegrated au ± 1 σ ron±2 σ KS 00 0.2	20.14 19.08 age ± 1σ steps A-D steps A-D 03 , Plagioclase, 64.53	2.588 3.985 n=4 n=4 n=4 J=0.0019577± 3.936	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7	0.072 1.53 1.86 1.86 1.86	0.20 0.13 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297C, Lab#= 0.13	49.5 52.4 295.1 666445-09 14.6	13.8 17.7 100.0 100.0 1±0.9 , Argus VI 11.2	35.32 35.43 35.597 35.54 35.582 35.63 33.46	0.49 0.66 0.09 0.12 0.09 0.14
C D I Plate: Isochi i A B	0.4 3.0 ntegrated au ± 1 σ ron±2 σ KS 0 0.2 0.3	20.14 19.08 age ± 1σ steps A-D steps A-D 03 , Plagioclase, 64.53 23.11	$\begin{array}{c} 2.588\\ 3.985\\ n=4\\ n=4\\ n=4\\ J=0.0019577\pm\\ 3.936\\ 3.830\\ \end{array}$	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90	0.072 1.53 1.86 1.86 1±0.0009714, NM 0.101 0.060	0.20 0.13 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297C, Lab#= 0.13 0.13	49.5 52.4 295.1 466445-09 14.6 46.5	13.8 17.7 100.0 1±0.9 0, Argus VI 11.2 18.0	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18	0.49 0.66 0.09 0.12 0.09 0.14 0.99 0.7
C D Plate: Isochi i A B C	$0.4 \\ 3.0 \\ ntegrated \\ au \pm 1\sigma \\ ron \pm 2\sigma \\ KS 00 \\ 0.2 \\ 0.3 \\ 3.0 \\ \end{bmatrix}$	20.14 19.08 age ± 1σ steps A-D steps A-D 03 , Plagioclase, 64.53 23.11 14.33	$\begin{array}{c} 2.588\\ 3.985\\ n=4\\ n=4\\ n=4\\ J=0.0019577\pm\\ 3.936\\ 3.830\\ 4.441\\ \end{array}$	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7	0.072 1.53 1.86 1.86 1±0.0009714, NN 0.101 0.060 0.736	0.20 0.13 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297C, Lab#= 0.13 0.13 0.11	49.5 52.4 295.1 666445-09 14.6	13.8 17.7 100.0 100.0 1±0.9 , Argus VI 11.2	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81	0.49 0.60 0.09 0.12 0.09 0.14 0.99 0.77 0.10
C D Plate: Isochu	0.4 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 0.2 0.3 3.0 ntegrated	20.14 19.08 age ± 1σ steps A-D steps A-D 03 , Plagioclase, 64.53 23.11 14.33 age ± 1σ	2.588 3.985 n=4 n=4 J=0.0019577± 3.936 3.830 4.441 n=3	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90 15.68	0.072 1.53 1.86 1.86 1±0.0009714, NM 0.101 0.060 0.736 0.897	0.20 0.13 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297C, Lab#= 0.13 0.13	49.5 52.4 295.1 466445-09 14.6 46.5	13.8 17.7 100.0 1±0.9 P, Argus VI 11.2 18.0 100.0	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81 35.71	0.49 0.60 0.09 0.12 0.09 0.14 0.99 0.14 0.99 0.77 0.10 0.13
C D II Plate: Isochi Ci A i B i C II Plate:	0.4 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 0.2 0.3 3.0 ntegrated au $\pm 1\sigma$	20.14 19.08 age ± 1σ steps A-D steps A-D 03 , Plagioclase, 64.53 23.11 14.33 age ± 1σ steps B-C	$\begin{array}{c} 2.588\\ 3.985\\ n=4\\ n=4\\ n=4\\ \end{array}$ J=0.0019577 \pm 3.936\\ 3.830\\ 4.441\\ n=3\\ n=2\\ \end{array}	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90 15.68 MSWD=9.34	0.072 1.53 1.86 1.86 1±0.0009714, NM 0.101 0.060 0.736 0.897 0.797	0.20 0.13 0.13 ⁴⁰ Ar/ ³⁶ Ar= 0.13 0.13 0.11 0.12	49.5 52.4 295.1 666445-09 14.6 46.5 70.2	13.8 17.7 100.0 1±0.9 9, Argus VI 11.2 18.0 100.0 88.8	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81 35.71 35.85	0.49 0.60 0.09 0.12 0.09 0.12 0.09 0.12 0.95 0.77 0.10 0.15 0.31
C D I Plate: Isoch i A B C I Plate:	0.4 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 0.2 0.3 3.0 ntegrated	20.14 19.08 age ± 1σ steps A-D steps A-D 03 , Plagioclase, 64.53 23.11 14.33 age ± 1σ	2.588 3.985 n=4 n=4 J=0.0019577± 3.936 3.830 4.441 n=3	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90 15.68	0.072 1.53 1.86 1.86 1±0.0009714, NM 0.101 0.060 0.736 0.897 0.797	0.20 0.13 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297C, Lab#= 0.13 0.13 0.11	49.5 52.4 295.1 666445-09 14.6 46.5 70.2	13.8 17.7 100.0 1±0.9 P, Argus VI 11.2 18.0 100.0	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81 35.71	0.49 0.60 0.09 0.12 0.09 0.14 0.99 0.14 0.99 0.77 0.16 0.11 0.31
C D I Plate: Isoch i C I Plate: Plate:	0.4 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 0.2 0.3 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$	20.14 19.08 age ± 1 σ steps A-D steps A-D 03, Plagioclase, 64.53 23.11 14.33 age ± 1 σ steps B-C no isochron	2.588 3.985 n=4 n=4 n=4 J=0.0019577± 3.936 3.830 4.441 n=3 n=2 n=0	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90 15.68 MSWD=9.34	0.072 1.53 1.86 1.86 1±0.0009714, NM 0.101 0.060 0.736 0.897 0.797	$\begin{array}{c} 0.20\\ 0.13\\ 0.13 \end{array}$ $^{40} \mathrm{Ar} /^{36} \mathrm{Ar} =$ $\begin{array}{c} 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.11\\ 0.12 \end{array}$ $^{40} \mathrm{Ar} /^{36} \mathrm{Ar} =$	49.5 52.4 295.1 666445-09 14.6 46.5 70.2 0.0=	13.8 17.7 100.0 100.0 1±0.9 0, Argus VI 11.2 18.0 100.0 88.8 ±0.0	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81 35.81 35.81 35.85 0.00	0.49 0.60 0.09 0.12 0.09 0.14 0.99 0.14 0.99 0.77 0.16 0.11 0.31
C D II Plate: Isochi Ci A i B i C II Plate:	0.4 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 0.2 0.3 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$	20.14 19.08 age ± 1 σ steps A-D steps A-D 03, Plagioclase, 64.53 23.11 14.33 age ± 1 σ steps B-C no isochron	2.588 3.985 n=4 n=4 n=4 J=0.0019577± 3.936 3.830 4.441 n=3 n=2 n=0	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90 15.68 MSWD=9.34 MSWD=0.05	0.072 1.53 1.86 1.86 1±0.0009714, NM 0.101 0.060 0.736 0.897 0.797	$\begin{array}{c} 0.20\\ 0.13\\ 0.13 \end{array}$ $^{40} \mathrm{Ar} /^{36} \mathrm{Ar} =$ $\begin{array}{c} 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.11\\ 0.12 \end{array}$ $^{40} \mathrm{Ar} /^{36} \mathrm{Ar} =$	49.5 52.4 295.1 666445-09 14.6 46.5 70.2 0.0=	13.8 17.7 100.0 100.0 1±0.9 0, Argus VI 11.2 18.0 100.0 88.8 ±0.0	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81 35.81 35.81 35.85 0.00	0.49 0.60 0.09 0.12 0.09 0.14 0.99 0.77 0.10 0.15 0.31 0.00
C D Plate: Isochi G A i B i C Isochi Isochi	0.4 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 0.2 0.3 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 KS 00	20.14 19.08 age ± 1 σ steps A-D steps A-D 03 , Plagioclase, 64.53 23.11 14.33 age ± 1 σ steps B-C no isochron 03 , Plagioclase,	$\begin{array}{c} 2.588\\ 3.985\\ n=4\\ n=4\\ n=4\\ \end{array}$	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90 15.68 MSWD=9.34 MSWD=0.05 0.02%, IC=1.00037	0.072 1.53 1.86 1.86 1.40 1±0.0009714, NM 0.101 0.060 0.736 0.897 0.797 1±0.0009714, NM	0.20 0.13 0.13 40 Ar/ 36 Ar= 0.13 0.13 0.13 0.11 0.12 40 Ar/ 36 Ar= 40 Ar/ 36 Ar= 40 Ar/ 36 Ar=	49.5 52.4 295.7 666445-09 14.6 46.5 70.2 0.0=	13.8 17.7 100.0 100.0 1±0.9 9, Argus VI 11.2 18.0 100.0 88.8 ±0.0 9, Argus VI	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81 35.81 35.81 35.85 0.00	0.49 0.60 0.09 0.12 0.09 0.14 0.99 0.77 0.10 0.15 0.31 0.00
C D I Plate: Isochi i A i C I Plate: Isochi i A i B	0.4 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 0.2 0.3 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 00 0.4	20.14 19.08 $age \pm 1\sigma$ steps A-D steps A-D 03, Plagioclase, 64.53 23.11 14.33 $age \pm 1\sigma$ steps B-C no isochron 03, Plagioclase, 20.38 11.38	$\begin{array}{c} 2.588\\ 3.985\\ n=4\\ n=4\\ n=4\\ \end{array}$	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90 15.68 MSWD=9.34 MSWD=0.05 0.02%, IC=1.00037 36.11	0.072 1.53 1.86 1.86 1.40 1±0.0009714, NN 0.101 0.060 0.736 0.897 0.797 1±0.0009714, NN 0.419	0.20 0.13 0.13 40 Ar/ 36 Ar= 0.13 0.13 0.13 0.11 0.12 40 Ar/ 36 Ar= 40Ar/ 36 Ar= 0.14	49.5 52.4 295.1 666445-09 14.6 46.5 70.2 0.0= 666445-10 49.1	13.8 17.7 100.0 1±0.9 9, Argus VI 11.2 18.0 100.0 88.8 ±0.0 9, Argus VI 66.8	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81 35.71 35.85 0.00 35.58	0.49
C D II Plate: Isochi i B i C II Plate: Isochi i B i B	$\begin{array}{c} 0.4 \\ 3.0 \\ \text{ntegrated} \\ \text{au } \pm 1\sigma \\ \text{ron} \pm 2\sigma \\ \hline \\ \text{KS 00} \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \text{au } \pm 1\sigma \\ \text{ron} \pm 2\sigma \\ \hline \\ \text{KS 00} \\ 0.4 \\ 3.0 \\ \end{array}$	20.14 19.08 $age \pm 1\sigma$ steps A-D steps A-D 03, Plagioclase, 64.53 23.11 14.33 $age \pm 1\sigma$ steps B-C no isochron 03, Plagioclase, 20.38 11.38	$\begin{array}{c} 2.588\\ 3.985\\ n=4\\ n=4\\ n=4\\ \end{array}$	35.14 31.80 MSWD=0.15 MSWD=0.13 0.02%, IC=1.00037 187.7 42.90 15.68 MSWD=9.34 MSWD=0.05 0.02%, IC=1.00037 36.11	0.072 1.53 1.86 1.86 1.40 1±0.0009714, NN 0.101 0.060 0.736 0.897 0.797 1±0.0009714, NN 0.419 0.208	0.20 0.13 0.13 40 Ar/ 36 Ar= 0.13 0.13 0.13 0.11 0.12 40 Ar/ 36 Ar= 0.14 0.096	49.5 52.4 295.1 666445-09 14.6 46.5 70.2 0.0= 666445-10 49.1	13.8 17.7 100.0 1±0.9 9, Argus VI 11.2 18.0 100.0 88.8 ±0.0 9, Argus VI 66.8	35.32 35.43 35.597 35.54 35.582 35.63 33.46 38.18 35.81 35.71 35.85 0.00 35.58 36.21	0.49 0.60 0.09 0.12 0.09 0.14 0.99 0.77 0.10 0.15 0.31 0.00 0.20 0.18

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

ID	Power	⁴⁰ Ar/ ³⁹ Ar	$^{37}Ar/^{39}Ar$	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar_K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±lσ
	(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)
				0.02%, IC=1.00037				-		
i A		29.57	3.163	68.48	0.153	0.16	32.4	32.6	34.12	0.49
i B	3.0	15.05	4.641	18.39	0.316	0.11	66.4	100.0	35.58	0.19
	Integrated	-	n=2		0.469	0.12			35.11	0.20
Plate	eau±1σ	steps A-B	n=2	MSWD=7.86	0.469			100.0	35.40	0.49
Isoch	ron±2σ	no isochron	n=0	MSWD=0.00		40 Ar/ 36 Ar=	0.0=	±0.0	0.00	0.00
	KSO	03, Plagioclase,	J=0.0019577±	0.02%, IC=1.00037	1±0.0009714, NM	M-297C, Lab#=	66445-12	, Argus VI		
i A	0.4	40.16	6.135	104.0	0.116	0.083	24.7	25.9	35.42	0.67
i B	3.0	14.32	8.159	16.92	0.333	0.063	69.8	100.0	35.66	0.18
	Integrated	$1 \text{ age } \pm 1 \sigma$	n=2		0.449	0.067			35.60	0.22
Plate	eau ± 1σ	steps A-B	n=2	MSWD=0.12	0.449			100.0	35.64	0.17
Isoch	ron±2σ	no isochron	n=0	MSWD=0.00		⁴⁰ Ar/ ³⁶ Ar=	0.0	±0.0	0.00	0.00
	KSO	03. Plagioclase,	J=0.0019577±	0.02%, IC=1.00037	1±0.0009714, NI	M-297C, Lab#=	66445-13	, Argus VI		
i A		29.45	3.756	67.86	0.206	0.14	32.9	30.4	34.52	0.39
i B	3.0	14.52	5.663	17.03	0.472	0.090	68.5	100.0	35.45	0.14
	Integrated	l age $\pm 1\sigma$	n=2		0.679	0.10			35.16	0.15
Plate	eau ± 1σ	steps A-B	n=2	MSWD=5.11	0.679			100.0	35.34	0.28
Isoch	ron±2σ	no isochron	n=0	MSWD=0.00		40 Ar/ 36 Ar=	0.0	±0.0	0.00	0.00
	KSO	103, Plagioclase,	J=0.0019577±	0.02%, IC=1.00037	1±0.0009714, NM	M-297C, Lab#=	66445-14	, Argus VI		
i A		28.57	5.570	64.68	0.192	0.092	34.7	34.6	35.31	0.39
i B	3.0	12.61	6.506	10.74	0.362	0.078	79.0	100.0	35.52	0.14
	Integrated	l age ± 1σ	n=2		0.553	0.083			35.45	0.16
Plate	eau ± 1σ	steps A-B	n=2	MSWD=0.26	0.553			100.0	35.50	0.13
Isoch	nron±2σ	no isochron	n=0	MSWD=0.00		⁴⁰ Ar/ ³⁶ Ar=	0.0	±0.0	0.00	0.00
	KSO	03, Plagioclase,	J=0.0019577 ±	0.02%, IC=1.00037	1±0.0009714, NI	M-297C, Lab#=	66445-15	, Argus VI		
i A		30.75	3.215	71.92	0.262	0.16	31.7	48.1	34.69	0.35
i B	3.0	15.68	5.808	20.80	0.282	0.088	63.8	100.0	35.65	0.20
	Integrated	$1 \text{ age } \pm 1 \sigma$	n=2		0.544	0.11			35.19	0.20
Plate	eau ± 1σ	steps A-B	n=2	MSWD=5.50	0.544			100.0	35.41	0.41
Isoch	ron±2σ	no isochron	n=0	MSWD=0.00		⁴⁰ Ar/ ³⁶ Ar=	0.0	±0.0	0.00	0.00
	KSO	41, Plagioclase,	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NI	M-297B, Lab#=	66425-01	, Argus VI		
Ki A		401.3	1.672	1342.1	0.044	0.31	1.2	2.8	17.3	2.6
Ki B	0.2	26.12	2.649	59.98	0.108	0.19	33.0	9.8	30.58	0.84
Ki C	0.4	12.65	2.892	12.28	0.391	0.18	73.2	34.8	32.864	0.09
Ki D		14.61 l age ± 1σ	3.369	17.82	1.018	0.15	65.8	100.0	34.150	0.05
			n=4		1.56	0.16			33.10	0.10

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

			³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}Ar_{\rm K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
	(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)
atea	u ± 1σ	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.00
ochr	on±2σ	no isochron	n=0	MSWD=0.00		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.000	0.00
	KS04	41, Plagioclase, J	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NI	M-297B, Lab#=	=66425-02	, Argus VI		
A	0.3	42.89	2.990	116.6	0.295	0.17	20.2	26.8	30.82	0.42
В	0.4	17.66	2.486	29.23	0.452	0.21	52.2	67.7	32.76	0.18
С	0.5	17.68	4.162	28.59	0.194	0.12	54.1	85.3	33.98	0.29
D	3.0	17.81	5.699	28.59	0.162	0.090	55.2	100.0	34.96	0.31
In	tegrated	age ± 1σ	n=4		1.103	0.15			32.78	0.15
atea	u ± 1σ	steps C-D	n=2	MSWD=5.35	0.356			32.3	34.44	0.48
		no isochron	n=0	M SWD=0.00		$^{40}Ar/^{36}Ar =$	0.0=		0.00	0.00
	VCA	41								
									22 41	0.4
										0.4
										0.7
										0.54
			-	12.17			75.3	100.0		0.20
In	tegrated	age $\pm 1\sigma$	n=4		0.892	0.16			33.55	0.23
atea	u ± 1σ	steps B-D	n=3	MSWD=0.29	0.342			38.4	35.35	0.17
ochr	on±2σ	no isochron	n=0	MSWD=0.00		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.00	0.0
	KS04	41, Plagioclase, J	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NI	M-297B, Lab#=	=66425-04	, Argus VI		
A	0.3	27.71	4.268	65.79	0.226	0.12	31.1	33.0	30.64	0.3
В	0.4	17.20	4.594	28.04	0.188	0.11	54.0	60.5	33.02	0.28
С	0.5		6.332	17.42				70.7		0.50
D	3.0	12.81	6.916	11.75		0.074	77.3	100.0		0.22
In	tegrated	age $\pm 1\sigma$	n=4		0.683	0.095				0.17
	-		n=2	MSWD=0.26	0.270			39.5		0.20
		no isochron	n=0	MSWD=0.00		$^{40}Ar/^{36}Ar =$	0.0=		0.00	0.0
		, .							20.21	0.0
										0.68
										0.28
										0.82
				42.66			45.4	100.0		0.32
	-					0.11				0.29
atea	u ± 1σ	steps C-D	n=2	MSWD=0.24	0.254			29.4	35.93	0.30
ochr	on±2σ	no isochron	n=0	MSWD=0.00		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.00	0.0
	KSO	41. Plagioclase	I=0 001954+0	02% IC=0 997505	8+0.0007907 NI	M-297B Lab#=	=66425-06	Arous VI		
А									32 78	0.3
										2.1
ь С	0.4	13.33	5.055	12.08	0.018	0.093	58.5 76.3	58.4 72.7	35.5 36.15	0.49
	A B C D In atea A B C D In atea C D In atea C D In atea A B C D In A A B C D In A A A B C D In A A A A A A A A A A A A A A A A A A	A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$ KS 0 ⁴ A 0.3 B 0.4 C 0.5 D 3.0 Integrated ateau $\pm 1\sigma$ ochron $\pm 2\sigma$	KS 041, Plagioclase, I A 0.3 42.89 B 0.4 17.66 C 0.5 17.68 D 3.0 17.81 Integrated age $\pm 1\sigma$ ateau $\pm 1\sigma$ steps C-D ateau $\pm 1\sigma$ steps C-D ochron $\pm 2\sigma$ no isochron KS 041, Plagioclase, I A 0.3 67.34 B 0.4 13.84 C 0.5 11.73 D 3.0 13.21 Integrated age $\pm 1\sigma$ ateau $\pm 1\sigma$ steps B-D ochron $\pm 2\sigma$ no isochron KS 041, Plagioclase, I A A 0.3 27.71 B 0.4 17.20 C 0.5 14.45 D 3.0 12.81 Integrated age $\pm 1\sigma$ ateau $\pm 1\sigma$ steps C-D ochron $\pm 2\sigma$ no isochron KS 041, Plagioclase, I A A 0.3 105.9 B 0.4 22.82 C 0.5 14.76 <td>KS 041, Plagioclase, J=0.001954±0 A 0.3 42.89 2.990 B 0.4 17.66 2.486 C 0.5 17.68 4.162 D 3.0 17.81 5.699 Integrated age ± 1σ n=4 ate au ± 1σ steps C-D n=2 ochron±2σ no isochron n=0 KS 041, Plagioclase, J=0.001954±0 A 0.3 67.34 2.644 B 0.4 13.84 3.971 C 0.5 11.73 4.151 D 3.0 13.21 4.113 Integrated age ± 1σ n=4 ateau ± 1σ steps B-D n=3 ochron±2σ no isochron n=0 KS 041, Plagioclase, J=0.001954±0 A 0.3 27.71 4.268 B 0.4 17.20 4.594 C 0.5 14.45 6.332 D 3.0 12.81 6.916 Integrated age ± 1σ n=4 ateau ± 1σ steps C-D n=2 ochron±2σ no isochron n=0</td> <td>where the section of the section section is section in the section is s</td> <td>A 0.3 42.89 2.990 116.6 0.295 B 0.4 17.66 2.486 29.23 0.452 C 0.5 17.68 4.162 28.59 0.194 D 3.0 17.81 5.699 28.59 0.162 Integrated age ± 1σ n=4 1.103 ateau ± 1σ steps C-D n=2 MSWD=0.00 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NT A 0.3 67.34 2.644 197.7 0.550 B 0.4 13.84 3.971 13.76 0.050 C 0.5 11.73 4.151 7.291 0.061 D 3.0 13.21 4.113 12.17 0.231 Integrated age ± 1σ n=4 0.892 ateau ± 1σ steps B-D n=3 MSWD=0.00 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.007907, NE A 0.3 27.71 4.268 65.79 0.226 B 0.4</td> <td>chron±2σ no isochron n=0 MSWD=0.00 40Ar/36Ar= KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±00007907, NM-297B, Lab# A 0.3 42.89 2.990 116.6 0.295 0.17 B 0.4 17.66 2.486 29.23 0.452 0.21 C 0.5 17.68 4.162 28.59 0.194 0.12 D 3.0 17.81 5.699 28.59 0.162 0.090 Integrated age ± 1σ n=4 1.103 0.15 ateau ± 1σ steps C-D n=2 MSWD=5.35 0.356 motheron±2σ no isochron n=0 MSWD=0.00 40Ar/³⁶Ar= KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#= A 0.3 67.34 2.644 197.7 0.550 0.19 D 3.0 13.21 4.113 12.17 0.231 0.12 Integrated age ± 1σ n=4 0.892 0.16 ateau ± 1σ steps B-D n=3 MSWD=0.20 0.342 <</td> <td>Achron±2σ no isochron n=0 MSWD=0.00 40Ar/36Ar= 0.03 KS041, Plagioclase, J=0.0019544.0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425.02 A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 B 0.4 17.66 2.486 29.23 0.442 0.21 52.2 C 0.5 17.68 4.162 28.59 0.162 0.090 55.2 Integrated age ± 1σ n=4 1.103 0.15 ateau ± 1σ steps C-D n=2 MSWD=0.00 40Ar/36Ar= 0.02 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425.03 A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 C 0.5 11.73 4.151 7.291 0.061 0.12 84.5 D 3.0 13.21 4.113 12.17 0.231 0.12 75.3 Integrated age ± 1σ n=4 0.892 0.16 0.12<td>Achron±2σ no isochron n=0 MSWD=0.00 4^{0}Ar/26Ar= 0.0±0.0 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425-02, Argus VI A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 26.8 B 0.4 17.66 2.486 29.23 0.452 0.21 52.2 67.7 C 0.5 17.68 4.162 28.59 0.162 0.090 55.2 100.0 Integrated age ± 1σ n=4 1.103 0.15 ateau ± 1σ steps C-D n=2 MSWD=5.35 0.356 32.3 chonisochron n=0 MSWD=0.00 40Ar/⁸Ar= 0.0±0.0 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425±03, Argus VI A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 61.6 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 07.3 <t< td=""><td>chron±2σ n n m MSWD=0.00 ⁴⁰Ar³⁶Ar= 0.0±0.0 0.000 KS041, Plagischae, F=0.01954: 0.2%, IC=0.9975058±0007907, NM:297B, Lab#=66425.02, Argus VI A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 26.8 30.822 B 0.4 17.66 2.486 29.23 0.452 0.21 52.2 67.7 32.76 C 0.5 17.68 4.162 2.859 0.162 0.090 55.2 100.0 34.96 Integrated age ± 1σ n=4 1.103 0.15 32.3 34.44 echron±2σ no isochron n=0 MSWD=0.00 40Ar³⁶Ar 0.0±0.0 0.00 KS041, Plagiochase, F=0.01934+0.02%, IC=0.9975058+0.0007907, NM:297B, Lab#=66425-03, Argus VI A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 61.6 32.41 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 67.3 35.85 C 0.5 11.73 4.151 7.291 0.</td></t<></td></td>	KS 041, Plagioclase, J=0.001954±0 A 0.3 42.89 2.990 B 0.4 17.66 2.486 C 0.5 17.68 4.162 D 3.0 17.81 5.699 Integrated age ± 1 σ n=4 ate au ± 1 σ steps C-D n=2 ochron±2 σ no isochron n=0 KS 041, Plagioclase, J=0.001954±0 A 0.3 67.34 2.644 B 0.4 13.84 3.971 C 0.5 11.73 4.151 D 3.0 13.21 4.113 Integrated age ± 1 σ n=4 ateau ± 1 σ steps B-D n=3 ochron±2 σ no isochron n=0 KS 041, Plagioclase, J=0.001954±0 A 0.3 27.71 4.268 B 0.4 17.20 4.594 C 0.5 14.45 6.332 D 3.0 12.81 6.916 Integrated age ± 1 σ n=4 ateau ± 1 σ steps C-D n=2 ochron±2 σ no isochron n=0	where the section of the section section is section in the section is s	A 0.3 42.89 2.990 116.6 0.295 B 0.4 17.66 2.486 29.23 0.452 C 0.5 17.68 4.162 28.59 0.194 D 3.0 17.81 5.699 28.59 0.162 Integrated age ± 1σ n=4 1.103 ateau ± 1σ steps C-D n=2 MSWD=0.00 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NT A 0.3 67.34 2.644 197.7 0.550 B 0.4 13.84 3.971 13.76 0.050 C 0.5 11.73 4.151 7.291 0.061 D 3.0 13.21 4.113 12.17 0.231 Integrated age ± 1σ n=4 0.892 ateau ± 1σ steps B-D n=3 MSWD=0.00 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.007907, NE A 0.3 27.71 4.268 65.79 0.226 B 0.4	chron±2σ no isochron n=0 MSWD=0.00 40 Ar/ 36 Ar= KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±00007907, NM-297B, Lab# A 0.3 42.89 2.990 116.6 0.295 0.17 B 0.4 17.66 2.486 29.23 0.452 0.21 C 0.5 17.68 4.162 28.59 0.194 0.12 D 3.0 17.81 5.699 28.59 0.162 0.090 Integrated age ± 1σ n=4 1.103 0.15 ateau ± 1σ steps C-D n=2 MSWD=5.35 0.356 motheron±2σ no isochron n=0 MSWD=0.00 40Ar/ ³⁶ Ar= KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#= A 0.3 67.34 2.644 197.7 0.550 0.19 D 3.0 13.21 4.113 12.17 0.231 0.12 Integrated age ± 1σ n=4 0.892 0.16 ateau ± 1σ steps B-D n=3 MSWD=0.20 0.342 <	Achron±2σ no isochron n=0 MSWD=0.00 40 Ar/ 36 Ar= 0.03 KS041, Plagioclase, J=0.0019544.0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425.02 A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 B 0.4 17.66 2.486 29.23 0.442 0.21 52.2 C 0.5 17.68 4.162 28.59 0.162 0.090 55.2 Integrated age ± 1σ n=4 1.103 0.15 ateau ± 1σ steps C-D n=2 MSWD=0.00 40 Ar/ 36 Ar= 0.02 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425.03 A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 C 0.5 11.73 4.151 7.291 0.061 0.12 84.5 D 3.0 13.21 4.113 12.17 0.231 0.12 75.3 Integrated age ± 1σ n=4 0.892 0.16 0.12 <td>Achron±2σ no isochron n=0 MSWD=0.00 4^{0}Ar/26Ar= 0.0±0.0 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425-02, Argus VI A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 26.8 B 0.4 17.66 2.486 29.23 0.452 0.21 52.2 67.7 C 0.5 17.68 4.162 28.59 0.162 0.090 55.2 100.0 Integrated age ± 1σ n=4 1.103 0.15 ateau ± 1σ steps C-D n=2 MSWD=5.35 0.356 32.3 chonisochron n=0 MSWD=0.00 40Ar/⁸Ar= 0.0±0.0 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425±03, Argus VI A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 61.6 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 07.3 <t< td=""><td>chron±2σ n n m MSWD=0.00 ⁴⁰Ar³⁶Ar= 0.0±0.0 0.000 KS041, Plagischae, F=0.01954: 0.2%, IC=0.9975058±0007907, NM:297B, Lab#=66425.02, Argus VI A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 26.8 30.822 B 0.4 17.66 2.486 29.23 0.452 0.21 52.2 67.7 32.76 C 0.5 17.68 4.162 2.859 0.162 0.090 55.2 100.0 34.96 Integrated age ± 1σ n=4 1.103 0.15 32.3 34.44 echron±2σ no isochron n=0 MSWD=0.00 40Ar³⁶Ar 0.0±0.0 0.00 KS041, Plagiochase, F=0.01934+0.02%, IC=0.9975058+0.0007907, NM:297B, Lab#=66425-03, Argus VI A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 61.6 32.41 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 67.3 35.85 C 0.5 11.73 4.151 7.291 0.</td></t<></td>	Achron±2σ no isochron n=0 MSWD=0.00 4^{0} Ar/ 26 Ar= 0.0±0.0 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425-02, Argus VI A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 26.8 B 0.4 17.66 2.486 29.23 0.452 0.21 52.2 67.7 C 0.5 17.68 4.162 28.59 0.162 0.090 55.2 100.0 Integrated age ± 1σ n=4 1.103 0.15 ateau ± 1σ steps C-D n=2 MSWD=5.35 0.356 32.3 chonisochron n=0 MSWD=0.00 40Ar/ ⁸ Ar= 0.0±0.0 KS041, Plagioclase, J=0.001954±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66425±03, Argus VI A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 61.6 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 07.3 <t< td=""><td>chron±2σ n n m MSWD=0.00 ⁴⁰Ar³⁶Ar= 0.0±0.0 0.000 KS041, Plagischae, F=0.01954: 0.2%, IC=0.9975058±0007907, NM:297B, Lab#=66425.02, Argus VI A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 26.8 30.822 B 0.4 17.66 2.486 29.23 0.452 0.21 52.2 67.7 32.76 C 0.5 17.68 4.162 2.859 0.162 0.090 55.2 100.0 34.96 Integrated age ± 1σ n=4 1.103 0.15 32.3 34.44 echron±2σ no isochron n=0 MSWD=0.00 40Ar³⁶Ar 0.0±0.0 0.00 KS041, Plagiochase, F=0.01934+0.02%, IC=0.9975058+0.0007907, NM:297B, Lab#=66425-03, Argus VI A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 61.6 32.41 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 67.3 35.85 C 0.5 11.73 4.151 7.291 0.</td></t<>	chron±2σ n n m MSWD=0.00 ⁴⁰ Ar ³⁶ Ar= 0.0±0.0 0.000 KS041, Plagischae, F=0.01954: 0.2%, IC=0.9975058±0007907, NM:297B, Lab#=66425.02, Argus VI A 0.3 42.89 2.990 116.6 0.295 0.17 20.2 26.8 30.822 B 0.4 17.66 2.486 29.23 0.452 0.21 52.2 67.7 32.76 C 0.5 17.68 4.162 2.859 0.162 0.090 55.2 100.0 34.96 Integrated age ± 1σ n=4 1.103 0.15 32.3 34.44 echron±2σ no isochron n=0 MSWD=0.00 40Ar ³⁶ Ar 0.0±0.0 0.00 KS041, Plagiochase, F=0.01934+0.02%, IC=0.9975058+0.0007907, NM:297B, Lab#=66425-03, Argus VI A 0.3 67.34 2.644 197.7 0.550 0.19 13.5 61.6 32.41 B 0.4 13.84 3.971 13.76 0.050 0.13 73.0 67.3 35.85 C 0.5 11.73 4.151 7.291 0.

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

	ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar}_\mathrm{K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	$\pm 1\sigma$
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)
i	D	3.0	12.40	5.207	9.866	0.155	0.098	79.9	100.0	25.22	0.26
1					9.800		0.098	/9.9	100.0	35.22	
		ntegrated	-	n=4		0.569	0.000.0	0.00	11 6	33.95	0.23
		$u \pm 1\sigma$	steps C-D	n=2	MSWD=2.79	0.237	0.099±0		41.6	35.43	0.387
k	sochr	·on±2σ	no isochron	n=0	MSWD=0.00		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.00	0.00
		KS0	41, Plagioclase,	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NM	M-297B, Lab#=	66425-07	, Argus VI		
Xi	А	0.3	19.52	3.346	34.94	0.220	0.15	48.5	47.5	33.61	0.30
	В	0.4	16.35	4.394	22.72	0.039	0.12	61.1	55.8	35.51	0.99
	С	0.5	12.41	4.424	9.278	0.038	0.12	80.8	63.9	35.63	0.93
	D	3.0	12.95	4.218	11.01	0.167	0.12	77.5	100.0	35.66	0.25
		itegrated	age ± 1σ	n=4		0.464	0.13			34.67	0.20
ł	Plates	au ± 1σ	steps B-D	n=3	MSWD=0.01	0.243			52.5	35.65	0.23
Ŀ	sochr	on±2σ	steps B-D	n=3	MSWD=0.00		40 Ar/ 36 Ar=	292.2	±24.2	35.8	0.9
		KS 0	41, Plagioclase,	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NM	M-297B, Lab#=	66425-08	, Argus VI		
	А	0.3	126.4	3.703	397.2	0.088	0.14	7.4	9.6	33.0	1.4
	В	0.4	12.64	4.209	10.81	0.072	0.12	77.4	17.4	34.76	0.48
	С	0.5	11.54	3.800	7.195	0.085	0.13	84.3	26.6	34.54	0.42
	D	3.0	16.31	3.756	22.91	0.678	0.14	60.4	100.0	34.97	0.12
	հ	itegrated	age ± 1σ	n=4		0.923	0.13			34.73	0.17
ł	Plates	au ± 1σ	steps A-D	n=4	MSWD=0.95	0.923			100.0	34.92	0.11
Ŀ	sochr	on±2σ	steps A-D	n=4	MSWD=0.76		$^{40}Ar/^{36}Ar =$	294.3	3±1.1	35.01	0.14
		KS0	41. Plagioclase	I=0 001954+0	.02%, IC=0.997505	8+0.0007907 NM	M-297B Lab#=	66425-09	Arous VI		
Xi	А	0.3	55.44	3.329	161.0	0.401	0.15	14.7	28.4	28.94	0.40
Xi	В	0.4	17.34	2.833	30.42	0.349	0.18	49.5	53.2	30.50	0.21
Xi	С	0.5	21.04	3.741	41.39	0.431	0.14	43.3	83.8	32.39	0.21
Ki	D	3.0	15.40	5.061	20.04	0.227	0.10	64.2	100.0	35.15	0.22
	հ	itegrated	age ± 1σ	n=4		1.41	0.14			31.39	0.15
ł	Platea	au $\pm 1\sigma$	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.000
ŀ	sochr	on±2σ	no isochron	n=0	MSWD=5.35		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.00	0.00
		KS 0	41, Plagioclase,	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NM	M-297B, Lab#=	66425-10), Argus VI		
Xi	А	0.3	31.95	3.004	76.58	0.220	0.17	29.9	27.5	33.95	0.37
	В	0.4	12.46	3.573	9.814	0.165	0.14	79.1	48.1	34.99	0.23
	С	0.5	15.54	4.155	15.57	0.013	0.12	72.6	49.7	40.0	2.8
	D	3.0	11.60	4.015	6.502	0.403	0.13	86.3	100.0	35.54	0.11
	հ	ntegrated	age ± 1σ	n=4		0.802	0.14			35.06	0.13
ł	Platea	au ± 1σ	steps B-D	n=3	MSWD=3.58	0.582			72.5	35.44	0.19
ŀ	sochr	on±2σ	steps B-D	n=3	MSWD=5.35		$^{40}Ar/^{36}Ar =$	263.6	±19.9	36.12	0.43
		KS 0	41, Plagioclase.	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NM	M-297B, Lab#=	66425-11	, Argus VI		
			, , ,			· · · · ·	· ·		-		

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

	ID	Power	40Ar/39Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar}_\mathrm{K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)
Ki	В	0.4	12.18	3.943	11.70	0.198	0.13	74.2	28.9	32.14	0.22
i	C	0.5	13.04	3.371	14.19	0.121	0.15	70.0	36.1	32.41	0.34
i	D	3.0	16.24	4.853	24.66	1.082	0.11	57.6	100.0	33.246	0.09
	Ir		age ± 1σ	n=4		1.69	0.12			32.10	0.14
Р		u±1σ	steps C-D	n=2	MSWD=5.46	1.203			71.1	33.19	0.21
		on±2σ	no isochron	n=0	MSWD=4.08		$^{40}Ar/^{36}Ar =$	0.0=		0.00	0.00
		VSA	41 pt - 1	1.0.001054.0	0.00/ 10: 0.007505	0.0007007.33	(207D 1 1 //	((105.10			
	۸	0.3	19.63	J=0.001954±0 3.334	.02%, IC=0.997505 35.08	0.228 0.000	и-297В, Lab#= 0.15	48.6	, Argus VI 31.8	33.86	0.29
	A B	0.3	19.05	3.334 4.875	10.81	0.228	0.13	48.0 79.0	35.2	35.80 37.3	1.4
	ь С	0.4	13.30	5.423	14.42	0.024	0.10	79.0	33.2 37.7	37.0	1.4
	D	3.0	27.45	4.524	61.69	0.446	0.11	34.9	100.0	34.08	0.23
			age $\pm 1\sigma$	n=4	01109	0.716	0.12	5,	10010	34.19	0.18
р		$u \pm 1\sigma$	steps A-D	n=4	MSWD=2.63	0.716	0.112		100.0	34.07	0.29
		on±2σ	steps A-D	n=4	MSWD=4.08	0.710	$^{40}Ar/^{36}Ar =$	292.8	3±3.6	34.54	0.64
			1								
					.02%, IC=0.997505						
	Α	0.3	17.20	5.590	19.56	0.007	0.091	69.0	1.5	42.1	5.2
	B	0.4	13.52	5.224	11.00	0.024	0.098	79.1	6.4	38.0	1.5
	C	0.5	12.39	5.233	7.559	0.027	0.097	85.4	11.9	37.6	1.3
	D	3.0	11.13	4.916	4.984	0.429	0.10	90.4	100.0	35.74	0.1
n		-	age $\pm 1\sigma$	n=4	MOUD 100	0.487	0.10		100.0	36.05	0.1:
		u±1σ	steps A-D	n=4	MSWD=1.92	0.487	40		100.0	35.77	0.14
ls	sochr	on±2σ	steps A-D	n=4	MSWD=0.16		⁴⁰ Ar/ ³⁶ Ar=	424.7	± 60.1	34.10	0.79
		KS 0	41, Plagioclase,	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NM	M-297B, Lab#=	66425-14	, Argus VI		
i	А	0.3	60.23	2.497	176.6	0.383	0.20	13.7	29.9	29.29	0.46
i	В	0.4	18.17	2.599	32.58	0.469	0.20	48.2	66.6	31.08	0.18
	С	0.5	13.32	3.647	12.18	0.048	0.14	75.2	70.3	35.58	0.77
	D	3.0	13.64	3.348	13.81	0.380	0.15	72.1	100.0	34.90	0.15
	Ir	itegrated	age ± 1σ	n=4		1.28	0.18			31.85	0.16
		u±1σ	steps C-D	n=2	MSWD=0.75	0.428			33.4	34.93	0.14
Is	sochr	on±2σ	no isochron	n=0	MSWD=0.27		⁴⁰ Ar/ ³⁶ Ar=	0.0	±0.0	0.00	0.00
		KS0	41, Plagioclase.	J=0.001954±0	.02%, IC=0.997505	8±0.0007907, NI	M-297B, Lab#=	66425-15	, Argus VI		
i	А	0.3	37.25	2.504	97.60	0.395	0.20	23.1	38.7	30.57	0.34
i	В	0.4	18.47	2.943	32.32	0.384	0.17	49.6	76.3	32.51	0.19
i	С	0.5	15.07	5.164	19.97	0.069	0.099	63.7	83.1	34.12	0.54
	D	3.0	14.35	5.494	16.05	0.172	0.093	70.1	100.0	35.74	0.27
	Ir	itegrated	age ± 1σ	n=4		1.020	0.15			32.42	0.16
P	latea	$u \pm 1\sigma$	steps C-D	n=2	MSWD=7.22	0.242			23.7	35.43	0.64
			-				40 Ar/ 36 Ar=				

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results

ID	Power	40Ar/39Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
	(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)
	KS0	63, Plagioclase,	J=0.0019562±	0.02%, IC=1.00037	1±0.0009714, NM	M-297C, Lab#=	66448-01	, Argus VI		
Ki A	0.2	92.89	0.0468	262.2	0.016	10.9	16.6	18.5	54.4	4.1
Ki B	0.2	41.78	0.4862	26.27	0.004	1.0	81.5	23.0	118.1	23.4
Ki C	3.0	31.26	0.0934	56.42	0.067	5.5	46.7	100.0	51.50	0.84
	itegrated	age ± 1σ	n=3		0.087	5.0			55.1	1.1
Platea	$u \pm 1\sigma$	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.00
Isochi	on±2σ	no isochron	n=0	MSWD=0.27		$^{40}Ar/^{36}Ar =$	0.0	± 0.0	0.0	0.0
	KSO	63 Plagioclase	I=0 0019562+	0.02%, IC=1.00037	1+0.0009714 NM	∕/-297C Iab#=	66448-07	A raus VI		
Ci A	0.2	827.1	0.2523	2752.1	0.007	2.0	1.7	13.7	49.1	13.9
Li B	0.2	170.6	1.334	463.3	0.007	0.38	1.7	16.5	49.1 117.3	62.6
а в Сі С	0.2 3.0	139.4	0.1692	403.3 374.7	0.001	3.0	20.6	10.5	100.0	2.7
				574.7		2.4	20.0	100.0		3.5
	ntegrated	-	n=3		0.048	2.4		0.0	93.6	
Platea	au ± 1σ	no plateau	n=0	M SWD=0.00	0.000			0.0	0.00	0.00
Isochi	on±2σ	no isochron	n=0	MSWD=0.27		⁴⁰ Ar/ ³⁶ Ar=	0.0=	± 0.0	0.0	0.0
	KS 0	63, Plagioclase,	J=0.0019562±	0.02%, IC=1.00037	1±0.0009714, NM	M-297C, Lab#=	66448-03	8, Argus VI		
i A	0.3	293.6	0.5942	883.7	0.016	0.86	11.1	24.1	112.7	6.7
ы В	3.0	109.2	0.1957	239.9	0.052	2.6	35.1	100.0	132.3	2.4
h	itegrated	age ± 1σ	n=2		0.068	1.7			127.6	2.5
Plates	au ± 1σ	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.00
Isochi	on±2σ	no isochron	n=0	MSWD=0.27		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.0	0.0
	KS0	63. Plagioclase	I=0 0019562+	0.02%, IC=1.00037	1+0.0009714 NM	∕I-297C Lab#=	66448-04	L Arous VI		
Ci A	0.3	145.1	2.432	422.4	0.007	0.21	14.1	28.1	72.2	9.5
Ci B	3.0	76.06	0.3497	179.6	0.017	1.5	30.3	100.0	80.6	4.1
	itegrated		n=2	1,510	0.024	0.55	0010	10010	78.3	4.1
	au ± 1σ	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.00
	on±2σ	no isochron	n=0	MSWD=0.27	0.000	$^{40}Ar/^{36}Ar =$	0.0-	±0.0	0.0	0.0
isociii	011-20	no isociiron	11-0	WISWD-0.27		Al/ Al-	0.0-	10.0	0.0	0.0
Ci A	KS 0 0.3	63, Plagioclase, 153.9	J=0.0019562± 0.8787	0.02%, IC=1.00037 454.7	1±0.0009714, NM 0.105	M-297C, Lab#= 0.58	66448-11 12.7	, Argus VI 22.0	68.7	1.5
A A A	3.0	45.76	0.8787	82.56	0.103	1.2	46.8	100.0	75.06	0.34
	itegrated		n=2	02.50	0.477	0.99	40.0	100.0	73.67	0.42
	iu±1σ	no plateau	n=0	MSWD=0.00	0.000	0.77		0.0	0.00	0.00
		-			0.000	40				
Isochi	on±2σ	no isochron	n=0	MSWD=0.27		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.00	0.00
	KS0	63, Plagioclase,	J=0.0019562±	0.02%, IC=1.00037	1±0.0009714, NM	M-297C, Lab#=	66448-14	, Argus VI		
Ki A	0.3	100.5	0.4344	280.7	0.157	1.2	17.5	32.7	61.87	0.89
Ki B	3.0	37.84	0.1976	71.49	0.324	2.6	44.2	100.0	58.92	0.32
	atogratod	age ± 1σ	n=2		0.481	1.9			59.89	0.36
I	negrateu	age = 10	11 2		0.101	1.7			57.07	0.50

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

	ID	Power	$^{40}\mathrm{Ar}/^{39}\mathrm{Ar}$	$^{37}\mathrm{Ar}/^{39}\mathrm{Ar}$	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar}_\mathrm{K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma
Is	ochr	on±2σ	no isochron	n=0	MSWD=0.27		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.00	0.00
		K\$06	58. Plagioclase J	=0 0019478+6	0.02%, IC=0.997505	8+0 0007907 N	M-297B Lab#	=66433-0	1 Argus V	T	
	А	0.2	13.80	4.382	13.26	0.037	0.12	74.2	43.4	36.26	0.65
	в	0.3	18.30	4.475	27.26	0.022	0.11	58.0	69.4	37.6	1.3
	С	0.4	58.20	4.097	157.9	0.001	0.12	20.4	70.6	41.9	40.0
	D	3.0	13.40	4.972	11.13	0.025	0.10	78.5	100.0	37.2	1.4
	Ir	itegrated	age $\pm 1\sigma$	n=4		0.086	0.11			36.95	0.7
Р		au±1σ	steps A-D	n=4	MSWD=0.33	0.086			100.0	36.62	0.54
		·on±2σ	steps A-D	n=4	MSWD=0.27		⁴⁰ Ar/ ³⁶ Ar=	313.7	±26.8	35.7	1.4
			<i>(</i>)								
7:					0.02%, IC=1.00037						0.5
(i /:	A D	0.2	39.79	3.372	105.4	0.158	0.15	22.4	8.7	31.57	0.5
ζi 	B	0.2	19.93	4.400	38.98	0.201	0.12	44.0	19.8	31.08	0.3
Ki	C	0.3	20.40	3.913	40.25	0.370	0.13	43.2	40.2	31.26	0.2
Ki	D	3.0	14.92	3.811	18.28	1.082	0.13	65.9	100.0	34.793	0.08
		-	age ± 1σ	n=4		1.81	0.13			33.379	0.09
P	latea	au ± 1σ	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.00
Is	ochr	on±2σ	no isochron	n=0	MSWD=0.39		⁴⁰ Ar/ ³⁶ Ar=	0.0=	± 0.0	0.00	0.0
		VC 0	(0								
<i>.</i> .					0.02%, IC=1.00037						0.24
Ki	A	0.2	18.96	4.624	32.78	0.202	0.11	50.9	15.2	34.19	
Ki	В	0.2 0.2	18.96 12.07	4.624 4.089	32.78 8.704	0.202 0.232	0.11 0.12	50.9 81.5	15.2 32.8	34.19 34.80	0.19
ζi	B C	0.2 0.2 0.3	18.96 12.07 13.68	4.624 4.089 3.478	32.78 8.704 13.77	0.202 0.232 0.456	0.11 0.12 0.15	50.9 81.5 72.3	15.2 32.8 67.3	34.19 34.80 35.03	0.19 0.13
<u>Ci</u>	B C D	0.2 0.2 0.3 3.0	18.96 12.07 13.68 13.02	4.624 4.089 3.478 4.186	32.78 8.704	0.202 0.232 0.456 0.433	0.11 0.12 0.15 0.12	50.9 81.5	15.2 32.8	34.19 34.80 35.03 35.04	0.19 0.13 0.13
	B C D Ir	0.2 0.2 0.3 3.0	$ 18.96 12.07 13.68 13.02 age \pm 1\sigma $	4.624 4.089 3.478 4.186 n=4	32.78 8.704 13.77 11.74	0.202 0.232 0.456 0.433 1.32	0.11 0.12 0.15	50.9 81.5 72.3	15.2 32.8 67.3 100.0	34.19 34.80 35.03 35.04 34.865	0.1 0.1 0.1 0.08
Р	B C D Ir latea	$0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ ntegrated \\ au \pm 1\sigma$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D	4.624 4.089 3.478 4.186 n=4 n=3	32.78 8.704 13.77 11.74 MSWD=0.65	0.202 0.232 0.456 0.433	0.11 0.12 0.15 0.12 0.13	50.9 81.5 72.3 76.0	15.2 32.8 67.3 100.0 84.8	34.19 34.80 35.03 35.04 34.865 34.99	0.1 0.1 0.1 0.08 0.08
Р	B C D Ir latea	0.2 0.2 0.3 3.0	$ 18.96 12.07 13.68 13.02 age \pm 1\sigma $	4.624 4.089 3.478 4.186 n=4	32.78 8.704 13.77 11.74	0.202 0.232 0.456 0.433 1.32	0.11 0.12 0.15 0.12	50.9 81.5 72.3 76.0	15.2 32.8 67.3 100.0	34.19 34.80 35.03 35.04 34.865	0.1 0.1 0.1 0.08 0.08
Р	B C D Ir latea	0.2 0.2 0.3 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D	4.624 4.089 3.478 4.186 n=4 n=3 n=3	32.78 8.704 13.77 11.74 MSWD=0.65	0.202 0.232 0.456 0.433 1.32 1.122	$\begin{array}{c} 0.11\\ 0.12\\ 0.15\\ 0.12\\ 0.13\\ \end{array}$	50.9 81.5 72.3 76.0 307.0	15.2 32.8 67.3 100.0 84.8 ±12.4	34.19 34.80 35.03 35.04 34.865 34.99 34.55	0.1 0.1 0.1 0.08 0.08
P Is	B C D Ir latea	0.2 0.2 0.3 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D	4.624 4.089 3.478 4.186 n=4 n=3 n=3	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39	0.202 0.232 0.456 0.433 1.32 1.122	$\begin{array}{c} 0.11\\ 0.12\\ 0.15\\ 0.12\\ 0.13\\ \end{array}$	50.9 81.5 72.3 76.0 307.0	15.2 32.8 67.3 100.0 84.8 ±12.4	34.19 34.80 35.03 35.04 34.865 34.99 34.55	0.19 0.12 0.08 0.09 0.43
P Is	B C D Ir latea ochr	0.2 0.2 0.3 3.0 ntegrated au $\pm 1\sigma$ ron $\pm 2\sigma$ KS 0	18.96 12.07 13.68 13.02 age $\pm 1\sigma$ steps B-D steps B-D 68 , Plagioclase, 2	4.624 4.089 3.478 4.186 n=4 n=3 n=3	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037	0.202 0.232 0.456 0.433 1.32 1.122	0.11 0.12 0.15 0.12 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297B, Lab#=	50.9 81.5 72.3 76.0 307.0	15.2 32.8 67.3 100.0 84.8 ±12.4	34.19 34.80 35.03 35.04 34.865 34.99 34.55	0.1 0.1 0.1 0.0 0.0 0.4
P Is	B C D Ir latea ochr	$0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ ntegrated \\ au \pm 1\sigma \\ ron \pm 2\sigma \\ KS0 \\ 0.2 \\ 0.2$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D 68 , Plagioclase, 30.95	4.624 4.089 3.478 4.186 n=4 n=3 n=3 =0.0019478± 3.610	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30	0.202 0.232 0.456 0.433 1.32 1.122	0.11 0.12 0.15 0.12 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297B, Lab#= 0.14	50.9 81.5 72.3 76.0 307.0	15.2 32.8 67.3 100.0 84.8 ±12.4 2, Argus VI 9.7	34.19 34.80 35.03 35.04 34.865 34.99 34.55 32.89	0.11 0.12 0.08 0.02 0.42 0.42
P Is	B C D In latea ochr A B	$0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ ntegrated \\ u \pm 1\sigma \\ ron \pm 2\sigma \\ KS0 \\ 0.2 \\ 0.$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D 68 , Plagioclase, 3 30.95 12.53	4.624 4.089 3.478 4.186 n=4 n=3 n=3 =0.0019478± 3.610 2.787	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30 10.41	0.202 0.232 0.456 0.433 1.32 1.122 1±0.0009714, NM 0.204 0.206	0.11 0.12 0.15 0.12 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297B, Lab#= 0.14 0.18	50.9 81.5 72.3 76.0 307.0 	15.2 32.8 67.3 100.0 84.8 ±12.4 2, Argus VI 9.7 19.6	34.19 34.80 35.03 35.04 34.865 34.99 34.55 32.89 34.26	0.1 0.1 0.0 0.0 0.0 0.4 0.4 0.4 0.2 0.1
P Is	B C D Ir latea ochr A B C D	$0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \textbf{au } \pm 1\sigma \\ \textbf{ron} \pm 2\sigma \\ \textbf{KS 0} \\ 0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \textbf{KS 0} \\ K$	18.96 12.07 13.68 13.02 $age \pm 1\sigma$ steps B-D steps B-D 68 , Plagioclase, 3 30.95 12.53 13.23	4.624 4.089 3.478 4.186 n=4 n=3 n=3 =0.0019478± 3.610 2.787 2.979	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30 10.41 12.42	0.202 0.232 0.456 0.433 1.32 1.122 1±0.0009714, NN 0.204 0.206 0.502	0.11 0.12 0.15 0.12 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297B, Lab#= 0.14 0.18 0.17	50.9 81.5 72.3 76.0 307.0 666433-12 30.0 77.3 74.1	15.2 32.8 67.3 100.0 84.8 ±12.4 2, Argus VI 9.7 19.6 43.6	34.19 34.80 35.03 35.04 34.865 34.99 34.55 32.89 34.26 34.68	0.19 0.13 0.08 0.09 0.43 0.43 0.44 0.22 0.12 0.07
P Is	B C D In lates ochr A B C D In	$0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \textbf{au } \pm 1\sigma \\ \textbf{ron} \pm 2\sigma \\ \textbf{KS 0} \\ 0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \textbf{KS 0} \\ K$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D 68 , Plagioclase, 3 30.95 12.53 13.23 13.80	4.624 4.089 3.478 4.186 n=4 n=3 n=3 (=0.0019478± 3.610 2.787 2.979 3.662	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30 10.41 12.42	0.202 0.232 0.456 0.433 1.32 1.122 1±0.0009714, NN 0.204 0.206 0.502 1.180	0.11 0.12 0.15 0.12 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297B, Lab#= 0.14 0.18 0.17 0.14	50.9 81.5 72.3 76.0 307.0 666433-12 30.0 77.3 74.1	15.2 32.8 67.3 100.0 84.8 ±12.4 2, Argus VI 9.7 19.6 43.6	34.19 34.80 35.03 35.04 34.865 34.99 34.55 32.89 34.26 34.68 34.756	0.19 0.12 0.08 0.03 0.43 0.44 0.44 0.44 0.44 0.44 0.22 0.12 0.07
P Is Ki	B C D In latea ochr A B C D In latea	0.2 0.2 0.3 3.0 integrated $au \pm 1\sigma$ ron $\pm 2\sigma$ KS 0 0.2 0.2 0.3 3.0 integrated	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D 68, Plagioclase, 3 30.95 12.53 13.23 13.80 age ± 1σ	4.624 4.089 3.478 4.186 n=4 n=3 n=3 =0.0019478± 3.610 2.787 2.979 3.662 n=4	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30 10.41 12.42 14.50	0.202 0.232 0.456 0.433 1.32 1.122 1±0.0009714, NM 0.204 0.206 0.502 1.180 2.09	0.11 0.12 0.15 0.12 0.13 ⁴⁰ Ar/ ³⁶ Ar= M-297B, Lab#= 0.14 0.18 0.17 0.14	50.9 81.5 72.3 76.0 307.0 666433-12 30.0 77.3 74.1 71.1	15.2 32.8 67.3 100.0 84.8 ±12.4 2, Argus VI 9.7 19.6 43.6 100.0	34.19 34.80 35.03 35.04 34.865 34.99 34.55 32.89 34.26 34.68 34.756 34.508	0.30 0.12 0.12 0.08 0.48 0.48 0.42 0.12 0.12 0.07 0.07 0.07 0.09 0.70
P Is Ci	B C D In latea ochr A B C D In latea	0.2 0.2 0.3 3.0 mtegrated $au \pm 1\sigma$ fron $\pm 2\sigma$ KS 0 0.2 0.2 0.2 0.3 3.0 mtegrated $au \pm 1\sigma$ ron $\pm 2\sigma$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D 68 , Plagioclase, 3 30.95 12.53 13.23 13.80 age ± 1σ steps B-D steps B-D steps B-D	4.624 4.089 3.478 4.186 n=4 n=3 n=3 =0.0019478± 3.610 2.787 2.979 3.662 n=4 n=3 n=3	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30 10.41 12.42 14.50 MSWD=2.20 MSWD=0.85	0.202 0.232 0.456 0.433 1.32 1.122 1±0.0009714, NN 0.204 0.206 0.502 1.180 2.09 1.89	0.11 0.12 0.15 0.12 0.13 40 Ar/ 36 Ar= 0.14 0.18 0.17 0.14 0.15 40 Ar/ 36 Ar=	50.9 81.5 72.3 76.0 307.0 	$15.2 \\ 32.8 \\ 67.3 \\ 100.0 \\ 84.8 \\ \pm 12.4 \\ 2. \text{ Argus VI} \\ 9.7 \\ 19.6 \\ 43.6 \\ 100.0 \\ 90.3 \\ \pm 15.7 \\ 15.7 $	34.19 34.80 35.03 35.04 34.865 34.99 34.55 34.99 34.55 32.89 34.26 34.68 34.756 34.68 34.756 34.508 34.696 33.45	0.11 0.11 0.08 0.02 0.44 0.44 0.22 0.11 0.07 0.07
P Is Gi P Is	B C D In latea ochr A B C D In latea ochr	$0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \text{au} \pm 1\sigma \\ \text{ron} \pm 2\sigma \\ \text{KS 0} \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \text{au} \pm 1\sigma \\ \text{ron} \pm 2\sigma \\ \text{KS 0} \\ KS 0$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D 68 , Plagioclase, J 30.95 12.53 13.23 13.80 age ± 1σ steps B-D steps B-D steps B-D	4.624 4.089 3.478 4.186 n=4 n=3 n=3 =0.0019478± 3.610 2.787 2.979 3.662 n=4 n=3 n=3 =0.0019522±4	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30 10.41 12.42 14.50 MSWD=2.20 MSWD=2.20 MSWD=0.85	0.202 0.232 0.456 0.433 1.32 1.122 1±0.0009714, NN 0.204 0.206 0.502 1.180 2.09 1.89	0.11 0.12 0.15 0.12 0.13 $^{40}Ar/^{36}Ar=$ M-297B, Lab#= 0.14 0.17 0.14 0.15 $^{40}Ar/^{36}Ar=$ M-297B, Lab#=	50.9 81.5 72.3 76.0 307.0 666433-12 30.0 77.3 74.1 71.1 323.6 =66438-0	15.2 32.8 67.3 100.0 84.8 ±12.4 2, Argus VI 9.7 19.6 43.6 100.0 90.3 ±15.7 1, Argus V	34.19 34.80 35.03 35.04 34.865 34.99 34.55 34.99 34.55 34.26 34.68 34.756 34.68 34.756 34.508 34.696 33.45	0.19 0.11 0.08 0.03 0.43 0.44 0.44 0.22 0.11 0.07 0.07 0.09 0.70
P Is Gi Is	B C D In latea ochr A B C D In latea ochr	$0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \text{au} \pm 1\sigma \\ \text{ron} \pm 2\sigma \\ \text{KS 0} \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \text{au} \pm 1\sigma \\ \text{ron} \pm 2\sigma \\ \text{KS 0} \\ 0.2 \\ 0.$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D 68 , Plagioclase, J 30.95 12.53 13.23 13.80 age ± 1σ steps B-D steps B-D steps B-D 79 , Plagioclase, J 17.80	4.624 4.089 3.478 4.186 n=4 n=3 n=3 =0.0019478± 3.610 2.787 2.979 3.662 n=4 n=3 n=3 =0.0019522±4 0.0877	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30 10.41 12.42 14.50 MSWD=2.20 MSWD=2.20 MSWD=0.85 0.02%, IC=0.997505 29.13	0.202 0.232 0.456 0.433 1.32 1.122 1±0.0009714, NN 0.204 0.206 0.502 1.180 2.09 1.89 ³ &±0.0007907, N 0.911	0.11 0.12 0.15 0.12 0.13 40 Ar/ 36 Ar= 0.14 0.18 0.17 0.14 0.15 40 Ar/ 36 Ar= M-297B, Lab#= 5.8	50.9 81.5 72.3 76.0 307.0 666433-12 30.0 77.3 74.1 71.1 323.6 =66438-0 51.7	15.2 32.8 67.3 100.0 84.8 ±12.4 2, Argus VI 9.7 19.6 43.6 100.0 90.3 ±15.7 1, Argus V 47.9	34.19 34.80 35.03 35.04 34.865 34.99 34.55 34.99 34.55 34.26 34.68 34.756 34.68 34.756 34.508 34.696 33.45	0.19 0.11 0.08 0.03 0.43 0.43 0.43 0.43 0.43 0.43 0.43
Is ^{Xi} P Is	B C D In latea ochr A B C D In latea ochr	$0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \text{au} \pm 1\sigma \\ \text{ron} \pm 2\sigma \\ \text{KS 0} \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.3 \\ 3.0 \\ \text{ntegrated} \\ \text{au} \pm 1\sigma \\ \text{ron} \pm 2\sigma \\ \text{KS 0} \\ KS 0$	18.96 12.07 13.68 13.02 age ± 1σ steps B-D steps B-D 68 , Plagioclase, J 30.95 12.53 13.23 13.80 age ± 1σ steps B-D steps B-D steps B-D	4.624 4.089 3.478 4.186 n=4 n=3 n=3 =0.0019478± 3.610 2.787 2.979 3.662 n=4 n=3 n=3 =0.0019522±4	32.78 8.704 13.77 11.74 MSWD=0.65 MSWD=0.39 0.02%, IC=1.00037 74.30 10.41 12.42 14.50 MSWD=2.20 MSWD=2.20 MSWD=0.85	0.202 0.232 0.456 0.433 1.32 1.122 1±0.0009714, NN 0.204 0.206 0.502 1.180 2.09 1.89	0.11 0.12 0.15 0.12 0.13 $^{40}Ar/^{36}Ar=$ M-297B, Lab#= 0.14 0.17 0.14 0.15 $^{40}Ar/^{36}Ar=$ M-297B, Lab#=	50.9 81.5 72.3 76.0 307.0 666433-12 30.0 77.3 74.1 71.1 323.6 =66438-0	15.2 32.8 67.3 100.0 84.8 ±12.4 2, Argus VI 9.7 19.6 43.6 100.0 90.3 ±15.7 1, Argus V	34.19 34.80 35.03 35.04 34.865 34.99 34.55 34.99 34.55 34.26 34.68 34.756 34.68 34.756 34.508 34.696 33.45	0.19 0.11 0.08 0.03 0.43 0.43 0.44 0.22 0.11 0.07 0.07 0.09 0.70

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

	ID	Power	40Ar/39Ar	$^{37}\mathrm{Ar}/^{39}\mathrm{Ar}$	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma
р	latad	$u \pm 1\sigma$	steps B-C	n=2	MSWD=0.24	0.992			52.1	33.25	0.09
			-			0.772	$^{40}Ar/^{36}Ar =$	0.0			
IS	socnr	on±2σ	no isochron	n=0	MSWD=8.21		Ar/~Ar=	0.0=	±0.0	0.00	0.00
		KS07	9, Plagioclase, J	=0.0019522±0	0.02%, IC=0.99750:	58±0.0007907, N	M-297B, Lab#	=66438-0	2, Argus VI	[
Ki	А	0.2	19.40	0.2361	34.99	0.150	2.2	46.8	29.4	32.13	0.37
i	В	0.2	11.65	0.0570	7.561	0.204	8.9	80.8	69.4	33.32	0.19
i	С	3.0	14.66	0.0622	18.22	0.156	8.2	63.3	100.0	32.86	0.29
	Ir	itegrated	age ± 1σ	n=3		0.511	4.6			32.83	0.16
р	lates	u±1σ	steps B-C	n=2	MSWD=1.76	0.360			70.6	33.18	0.20
			-			0.500	$^{40}Ar/^{36}Ar =$	0.0			
Is	sochr	ron±2σ	no isochron	n=0	MSWD=8.21		¹⁰ Ar/ ³⁰ Ar=	0.0=	±0.0	0.00	0.00
		KS07	79, Plagioclase, J	=0.0019522±0	0.02%, IC=0.99750:	58±0.0007907, N	M-297B, Lab#	=66438-0	3, Argus VI	I	
i	А	0.2	26.81	0.1555	60.83	0.045	3.3	33.0	15.8	31.32	1.00
i	В	0.2	11.64	0.0563	8.457	0.056	9.1	78.6	35.5	32.37	0.60
i	С	3.0	11.89	0.0422	9.443	0.182	12.1	76.5	100.0	32.21	0.23
	Ir	itegrated	age ± 1σ	n=3		0.283	8.1			32.10	0.25
		-	steps A-C	n=3	MSWD=0.43	0.283			100.0	32.19	0.21
						0.205	40 . 36 .	0.0			
	Isoc	hron±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.00	0.00
		KS07	9, Plagioclase, J	=0.0019522±0	0.02%, IC=0.99750	58±0.0007907, N	M-297B, Lab#	=66438-0	4, Argus Vl	I	
i	А	0.2	96.47	-1.5355	364.3	0.000	-	-11.7	0.0	-41	123
i	В	0.2	-135.7081	4.922	-601.0680	0.000	0.10	-31.2	0.0	146	564
i	С	3.0	1.397	0.0105	2.124	1.20	48.7	54.9	100.0	2.726	0.03
	Ir	itegrated	age ± 1σ	n=3		1.20	54.7			2.692	0.04
Р	latea	u±1σ	steps A-C	n=3	MSWD=0.09	1.20			100.0	2.726	0.03
		on±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.00	0.00
					0.02%, IC=0.997503						0.00
	A	0.2	2.528	0.0096	2.581	0.033	53.0	69.8	3.3	6.27	0.63
i	B	0.2	1.257		1.006	0.072	-	76.0	10.6	3.39	0.28
i	С	3.0	3.548	0.0152	9.394	0.884	33.7	21.6	100.0	2.736	0.06
	Ir	itegrated	age ± 1σ	n=3		0.989	43.9			2.901	0.06
Р	latea	u±1σ	steps B-C	n=2	MSWD=5.22	0.956			96.7	2.77	0.14
Is	sochr	on±2σ	no isochron	n=0	MSWD=8.21		40 Ar/ 36 Ar=	0.0=	±0.0	0.00	0.00
		1000	10								
					0.02%, IC=0.99750:						
		0.2	48.50	7.105	146.6	0.018	0.072	11.8	14.3	20.5	2.3
	A		31.49	7.492	75.88	0.006	0.068	30.7	19.3	34.5	5.6
i	В	0.2				0.099	0.12	20.4	100.0	24.71	0.61
i	B C	3.0	34.03	4.308	92.86				10010		
i i	B C Ir	3.0 ntegrated	34.03	4.308 n=3	92.86	0.123	0.12	2011		24.60	
i i P	B C Ir	3.0	34.03		92.86 MSWD=3.14			2011	100.0		0.64

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

	ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1o
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma
		KS 07			0.02%, IC=0.997505				7, Argus V		
Ki	А	0.2	26.37	0.5421	57.74	0.103	0.94	35.4	12.9	33.09	0.54
i	В	0.2	11.28	0.2825	7.810	0.072	1.8	79.7	21.9	31.85	0.40
i	С	3.0	11.39	0.2974	8.283	0.626	1.7	78.7	100.0	31.748	0.08
		itegrated	-	n=3		0.801	1.6			31.93	0.1
ł	latea	u±1σ	steps B-C	n=2	MSWD=0.05	0.698			87.1	31.75	0.08
ŀ	sochr	on±2σ	no isochron	n=0	MSWD=8.21		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.00	0.00
		KS07	9, Plagioclase, J	=0.0019522±0	0.02%, IC=0.997505	58±0.0007907, N	M-297B, Lab#	=66438-0	8, Argus VI	[
Ki	А	0.2	26.43	1.265	60.06	0.069	0.40	33.2	23.5	31.13	0.70
i	В	0.2	13.80	0.0851	15.45	0.065	6.0	67.0	45.6	32.71	0.60
i	С	3.0	13.77	0.0981	14.83	0.161	5.2	68.2	100.0	33.27	0.2
		itegrated		n=3		0.295	1.4			32.64	0.2
ł	Platea	u±1σ	steps B-C	n=2	MSWD=0.71	0.226			76.5	33.17	0.24
Ŀ	sochr	on±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.00	0.0
		KS 07	9. Plagioclase. J	=0.0019522±0	0.02%, IC=0.997505	58±0.0007907. N	M-297B, Lab#	=66438-0	9. Argus V	I	
i	А	0.2	139.3	2.533	454.3	0.014	0.20	3.8	17.6	18.6	4.0
i	В	0.2	44.52	0.6675	138.6	0.018	0.76	8.1	40.5	12.8	2.0
i	С	3.0	48.05	0.6313	151.3	0.047	0.81	7.0	100.0	12.1	1.2
	Ir	itegrated	age ± 1σ	n=3		0.079	0.52			13.4	1.1
ł	latea	u±1σ	steps A-C	n=3	MSWD=1.25	0.079			100.0	12.7	1.1
Ŀ	sochr	on±2σ	no isochron	n=0	MSWD=8.21		40 Ar/ 36 Ar=	0.0=	±0.0	0.0	0.0
		KS 07	9. Plagioclase, J	=0.0019522±0	0.02%, IC=0.997505	58±0.0007907. N	M-297B, Lab#	=66438-1	0. Argus V	I	
i	А	0.2	36.20	1.874	90.60	0.072	0.27	26.5	28.0	33.97	0.7
i	В	0.2	12.81	0.8058	10.77	0.028	0.63	75.7	38.9	34.3	1.2
i	С	3.0	15.93	1.741	20.78	0.158	0.29	62.3	100.0	35.17	0.30
	Ir	itegrated	age ± 1σ	n=3		0.258	0.30			34.74	0.3
ł	latea	u±1σ	steps A-C	n=3	MSWD=1.25	0.258			100.0	34.98	0.3
Ŀ	sochr	on±2σ	no isochron	n=0	MSWD=8.21		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.00	0.0
		KS07	9. Plagioclase	=0 0019522+6	0.02%, IC=0.997505	58+0 0007907 N	M-297B Lab#	=66438-1	1 Arous V	ſ	
i	А	0.2	12.33	0.0427	11.80	0.230	11.9	71.7	73.6	31.32	0.2
i	В	0.2	11.32	0.0241	7.746	0.042	21.2	79.8	87.1	31.96	0.7
Ki	C	3.0	13.66	-0.0159	13.18	0.040	-	71.5	100.0	34.53	0.80
	Ir	itegrated		n=3		0.312	15.6			31.82	0.2
J	Platea	u±1σ	steps A-B	n=2	MSWD=0.64	0.272			87.1	31.36	0.19
		on±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0-	±0.0	0.0	0.0
1	, 0 ,111	011- 2 0	10 150011011	п -0	1115 tt D=0.21		/ II/ / II ⁻	0.0-	-0.0	0.0	0.0
		KS07	9, Plagioclase, J	=0.0019522±0	0.02%, IC=0.997505	58±0.0007907, N	M-297B, Lab#	=66438-12	2, Argus VI	I	

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

	ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar}_\mathrm{K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	$\pm 1\sigma$
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)
	P	0.0	10.10	0.0104	0.550	0.100	2.4	54.0	-1 (22.50	0.05
i i	B C	0.2	12.13	0.2134	9.770	0.102	2.4	76.3	51.6	32.78	0.35
l		3.0 ntegrated	14.16	0.4818	15.81	0.202	1.1 1.2	67.3	100.0	33.74	0.22 0.20
		-	-	n=3		0.418	1.2		100.0	33.61	
		$u \pm 1\sigma$	steps A-C	n=3	MSWD=3.40	0.418	$^{40}Ar/^{36}Ar =$	0.0	100.0	33.54	0.32
ľ	sochr	·on±2σ	no isochron	n=0	MSWD=8.21		⁴⁰ Ar/ ⁵⁰ Ar=	0.0=	±0.0	0.00	0.00
					0.02%, IC=0.997505						
i	А	0.2	18.23	0.0611	31.24	0.112	8.3	49.4	22.2	31.88	0.44
	В	0.2	10.49	0.0238	5.673	0.140	21.5	84.0	50.1	31.22	0.26
i	С	3.0	13.81	0.3256	15.54	0.252	1.6	66.9	100.0	32.72	0.20
		ntegrated	-	n=3		0.504	2.8			32.12	0.16
I	Platea	au ± 1σ	steps A-C	n=3	MSWD=10.91	0.504			100.0	32.13	0.48
I	sochr	on±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0	±0.0	0.00	0.00
		KS07	9, Plagioclase, J	=0.0019522±0	0.02%, IC=0.997505	58±0.0007907, N	M-297B, Lab#	=66438-1	4, Argus V	I	
i	А	0.2	-28.9737	-0.2552	-93.4731	-0.001	-	4.8	-1.2	-4.9	18.7
i	В	0.2	29.51	-0.2588	96.51	0.001	-	3.2	-0.2	3.4	22.7
i	С	3.0	22.87	3.412	47.72	0.098	0.15	39.6	100.0	32.12	0.56
	h	ntegrated	age ± 1σ	n=3		0.098	0.15			32.29	0.72
ł	Platea	au ± 1σ	steps A-C	n=3	MSWD=2.76	0.098			100.0	32.07	0.93
I	sochr	on±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0	±0.0	0.0	0.0
		KS07	9, Plagioclase, J	=0.0019522±0	0.02%, IC=0.997505	58±0.0007907, N	M-297B, Lab#	=66438-1	5, Argus V	ſ	
i	А	0.2	12.57	0.0977	12.91	0.024	5.2	69.7	23.0	31.0	1.2
	В	0.2	12.61	0.0597	11.43	0.034	8.5	73.2	54.7	32.69	0.95
	С	3.0	14.90	0.0464	16.51	0.048	11.0	67.3	100.0	35.45	0.79
	h	ntegrated	age $\pm 1\sigma$	n=3		0.106	8.2			33.56	0.55
	Plat	teau ± 1σ	steps B-C	n=2	MSWD=5.02	0.082			77.0	34.33	1.35
	Isoc	hron±2σ	no isochron	n=0	MSWD=8.21		⁴⁰ Ar/ ³⁶ Ar=	0.0	±0.0	0.0	0.0
		KS(198, Sanidine, J=	0.0019483±0	.02%, IC=1.000371	±0.0009714, NM	-297B, Lab#=6	6432-16,	Argus VI		
	А	0.2	52.80	0.0152	143.9	0.274	33.5	19.4	2.3	36.23	0.49
i	В	0.2	11.22	0.0087	4.174	0.303	58.7	89.0	4.8	35.25	0.13
i	С	3.0	12.40	0.0129	7.931	11.53	39.7	81.1	100.0	35.493	0.01
	հ	ntegrated	age ± 1σ	n=3		12.1	39.8			35.504	0.02
I	Platea	au ± 1σ	steps A-C	n=3	MSWD=2.80	12.1			100.0	35.490	0.03
I	sochr	on±2σ	no isochron	n=0	MSWD=8.21		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.000	0.00
		KS	198, Sanidine, J=	0.0019483±0	.02%, IC=1.000371	±0.0009714, NM	-297B, Lab#=6	6432-17,	Argus VI		
	А	0.2	10.96	0.0102	3.281	0.190	50.0	91.2	4.7	35.25	0.19
i		0.2	11.28	0.0117	4.320	0.401	43.5	88.7	14.6	35.31	0.11
	В	0.2	11.20								
i i i	B C	3.0	12.28	0.0078	7.787	3.47	65.5	81.3	100.0	35.237	0.032

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

	D	D	⁴⁰ Ar/ ³⁹ Ar	-	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K		⁴⁰ Ar*	³⁹ Ar		. 1
1	D	Power	Ar/~Ar	Ar/~Ar			K/Ca			Age	±lσ
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)
Pla	atea	u±1σ	steps A-C	n=3	MSWD=0.21	4.06			100.0	35.243	0.031
		on±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0-	±0.0	0.00	0.00
150	cint	/n-20	no isocinon	по	115110 0.21		211/211	0.0-	20.0	0.00	0.00
		KS(98. Sanidine. J=	0.0019483±0	.02%, IC=1.000371	±0.0009714. NM	-297B. Lab#=6	6432-18.	Argus VI		
Xi .	A	0.2	78.74	0.0293	236.6	0.301	17.4	11.2	5.9	31.18	0.60
	В	0.2	12.55	0.0151	9.607	0.360	33.8	77.4	13.0	34.30	0.13
i	С	3.0	13.74	0.0075	13.64	4.44	68.2	70.6	100.0	34.268	0.038
-	-		age $\pm 1\sigma$	n=3	10101	5.10	54.8	, 010	10010	34.088	0.050
DL		u±1σ	steps B-C	n=2	MSWD=0.07	4.800	•		94.1	34.27	0.037
			-			4.800	40				
Iso	ochro	on±2σ	no isochron	n=0	MSWD=8.21		40 Ar/ 36 Ar=	0.0=	±0.0	0.000	0.000
		KS(198, Sanidine. J=	0.0019483±0	.02%, IC=1.000371	±0.0009714, NM	I-297B, Lab#=6	6432-19.	Argus VI		
Xi	A	0.2	407.0	0.1876	1358.5	0.082	2.7	1.4	1.4	19.7	2.8
	В	0.2	23.57	0.1080	48.31	0.421	4.7	39.4	8.6	32.84	0.23
	С	3.0	15.18	0.0110	18.87	5.34	46.5	63.3	100.0	33.928	0.040
			age $\pm 1\sigma$	n=3		5.85	25.0			33.650	0.057
PL		u±1σ	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.000
						0.000	40				
Iso	chro	on±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.000	0.000
		KSO	98, Sanidine, J=	0.0019483±0	.02%, IC=1.000371	±0.0009714, NM	I-297B, Lab#=6	6432-20,	Argus VI		
Xi .	A	0.2	718.2	0.0653	2430.2	0.132	7.8	0.0	0.9	0.2	3.8
Xi	В	0.2	38.76	0.0274	101.5	0.832	18.6	22.6	6.3	30.93	0.24
Xi	С	3.0	18.10	0.0073	29.31	14.4	70.0	52.1	100.0	33.342	0.041
	In	tegrated	age $\pm 1\sigma$	n=3		15.4	57.5			32.929	0.053
Pla		u±1σ	no plateau	n=0	MSWD=0.00	0.000			0.0	0.00	0.000
Iso	chro	on±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.000	0.000
37.					.02%, IC=1.000371					24.00	0.10
Xi		0.2	18.00	0.0092	27.47	0.862	55.2	54.9	10.7	34.88	0.12
	B	0.2	10.73	0.0078	2.447	0.886	65.4	93.3	21.7	35.321	0.055
i (C .	3.0	11.12	0.0079	3.751	6.32	64.4	90.0	100.0	35.341	0.019
		-	age $\pm 1\sigma$	n=3		8.06	63.4			35.289	0.022
Pla	atea	u±1σ	steps B-C	n=2	MSWD=0.12	7.201			89.3	35.34	0.020
Iso	chro	on±2σ	no isochron	n=0	MSWD=8.21		40 Ar/ 36 Ar=	0.0=	±0.0	0.000	0.000
		Kei	198 Sanidina T-	0 0010492-0	.02%, IC=1.000371	10 0000714 NIM	2078 Joh#-4	6422 22	A rang VI		
i .	А	0.2	21.53	0.0019483 ± 0 0.0169	.02%, IC=1.000371 38.57	±0.0009714, NM 0.355	-297В, Lab#=6 30.1	47.1	4.5	35.78	0.22
	A B	0.2	10.42	0.0109	1.392	0.355	50.1 68.5	47.1 96.1	4.5 9.1	35.312	0.22
	ь С	0.2 3.0	10.42	0.0073	1.392	7.11	60.7	90.1 95.0	9.1 100.0	35.462	0.098
1 1					1./03	7.82	58.3	10.0	100.0	35.462	
	111	regrated	age $\pm 1\sigma$	n=3			20.5		100.0		0.018
D.											
Pla	atea	u ± 1σ	steps A-C	n=3	MSWD=2.24	7.82	⁴⁰ Ar/ ³⁶ Ar=		100.0	35.460	0.020 0.000

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

	ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar_K}$	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1o
		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma
		KS	098, Sanidine, J=	0.0019483±0	.02%, IC=1.000371	±0.0009714, NM	I-297B, Lab#=6	6432-23,	Argus VI		
i	Α	0.2	-4.2666	0.5265	-47.6246	-0.001	0.97	-230.4	-0.9	34.8	29.7
i	В	0.2	14.84	-0.0321	7.702	0.003	-	84.6	1.9	44.2	10.'
i	С	3.0	10.37	0.0087	1.415	0.120	58.9	96.0	100.0	35.12	0.29
		0	age ± 1σ	n=3		0.123	171.8			35.38	0.40
]	Platea	u±1σ	steps A-C	n=3	MSWD=0.36	0.123			100.0	35.13	0.29
]	lsochr	on±2σ	no isochron	n=0	MSWD=8.21		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.0	0.0
		KS	098, Sanidine, J=	0.0019483±0	.02%, IC=1.000371	±0.0009714, NM	I-297B, Lab#=6	6432-24,	Argus VI		
i	А	0.2	10.97	0.0162	3.490	0.196	31.4	90.6	7.9	35.10	0.1
i	В	0.2	10.29	0.0201	1.508	0.113	25.3	95.7	12.4	34.77	0.2
i	С	3.0	10.71	0.0088	2.493	2.18	58.0	93.1	100.0	35.214	0.02
	հ	itegrated	age ± 1σ	n=3		2.49	51.6			35.185	0.03
]	Platea	u±1σ	steps A-C	n=3	MSWD=1.30	2.49			100.0	35.208	0.03
1	lsochr	on±2σ	no isochron	n=0	MSWD=8.21		$^{40}\text{Ar}/^{36}\text{Ar}=$	0.0=	±0.0	0.00	0.0
		VS	0 09 Guiddin T	0.0010482+0	.02%, IC=1.000371	0.000714 NM	1207D 1 1# ((122.25	4		
Ki	А	0.2	35.65	0.0019483±0	.02%, IC=1.000371	0.398 0.0009	22.9 22.9	27.2	Argus VI 1.9	34.24	0.32
i	B	0.2	10.54	0.0225	2.027	0.911	37.7	94.3	6.3	35.100	0.05
i	C	3.0	11.10	0.0090	3.960	19.6	57.0	89.5	100.0	35.051	0.01
•			age $\pm 1\sigma$	n=3	21,200	20.9	54.2	0,10	10010	35.037	0.01
1		1u ± 1σ	steps B-C	n=2	MSWD=0.92	20.472			98.1	35.05	0.01
		on±2σ	no isochron	n=0	MSWD=8.21	20.172	$^{40}Ar/^{36}Ar =$	0.0-	±0.0	0.000	0.00
1	SUCIII	011-20	no isociiron	11-0	WISWD-0.21		Al/ Al-	0.0-	10.0	0.000	0.00
	٨		· · · ·		.02%, IC=1.000371					25.04	0.2
i i	A B	0.2 0.2	29.63 10.58	0.0489 0.0093	66.71 1.917	$0.655 \\ 0.440$	10.4 54.7	33.5 94.7	8.0 13.4	35.04 35.355	0.22
ı i	ь С	0.2 3.0	10.58	0.0093	5.323	0.440 7.09	60.3	94.7 86.4	100.0	35.249	0.08
1			$age \pm 1\sigma$	n=3	5.525	8.19	43.5	.	100.0	35.249	0.01
1		iu±1σ	steps A-C	n=3	MSWD=1.16	8.19	13.5		100.0	35.258	0.02
			-			0.17	40 . 36 .	0.0			
1	lsochr	on±2σ	no isochron	n=0	MSWD=8.21		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.000	0.00
					.02%, IC=1.000371					26.00	0.5
Xi		0.2	33.00	0.0259	77.09	0.145	19.7	31.0	3.3	36.08	0.5
i	B	0.2	10.38	0.0116	1.103	0.306	44.2	96.9	10.2	35.48	0.12
i	С	3.0	10.80	0.0089	2.792	3.98	57.2	92.4	100.0	35.195	0.02
_		-	age ± 1σ	n=3		4.43	52.9		o	35.243	0.02
		u ± 1σ	steps B-C	n=2	MSWD=5.76	4.282	10 5-		96.7	35.20	0.04
]	lsochr	on±2σ	no isochron	n=0	MSWD=8.21		⁴⁰ Ar/ ³⁶ Ar=	0.0=	±0.0	0.000	0.00
		KS	098, Sanidine, J=	0.0019483±0	.02%, IC=1.000371	±0.0009714, NM	I-297B, Lab#=6	6432-28,	Argus VI		

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

i B 0.2 10.42 0.0036 1.218 0.242 142.7 96.5 10.7 35.49 0.1 i C 3.0 11.23 0.0077 4.059 2.73 66.1 89.3 100.0 35.418 0.02 Integrated age ± 1 o n=3 3.06 67.2 35.422 0.03 Plateau ± 1 o steps A-C n=3 MSWD=0.14 3.06 100.0 35.420 0.02 Isochron±2 o no isochron n=0 MSWD=8.21 $^{40}Ar^{30}Ar= 0.0\pm0.0 0.000 0.00$ KS098, Sanidine, F=0.019483=0.02%, IC=1.000371±0.0009714, NM:297B, Lab#=66432-29, Argus VI i A 0.2 34.02 0.0311 81.13 0.108 16.4 29.5 3.1 35.46 0.66 i B 0.2 10.64 0.0195 2.203 0.182 26.2 93.9 8.4 35.27 0.11 i C 3.0 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.529 0.01 Integrated age ± 1 o n=3 3.48 47.2 35.513 0.02 Plateau ± 1 o steps A-C n=3 MSWD=0.97 3.48 100.0 35.526 0.02 Isochron±2 o no isochron n=0 MSWD=8.21 $^{40}Ar^{36}Ar= 0.0\pm0.0 0.000 0.000$ KS098, Sanidine, F=0.0019483±0.02%, IC=1.000371±0.0009714, NM:297B, Lab#=66432-30, Argus VI ci A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1 o n=3 3.63 58.1 3.4488 0.05 Plateau ± 1 o steps B-C n=2 MSWD=0.71 3.513 96.94 -66432-30, Argus VI ci A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.012 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1 o n=3 4.05 4.3 3.4561 0.08 i C 0.6 17.59 0.1093 26.457 0.942 4.2 55.5 23.3 34.81 0.17 i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.17 i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.17 i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 10.47 argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 10.47 argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.17 i B 0.5 18.02 0.1303 27.47 1.40 3.9 550.07.7 35.015 0.08 i C 0.6 17.59 0.1093 26.45 1.71 4.7 35.6 10.00 34.561 0.08 i C 0.6 17.59 0.1093 26.45 1.71 4.7 35.6 10.00 0.0 0.00 KS110, Orthoclase, F=0.001950340.02%, IC=0.97503840.000797, NM:297B, Lab#=6435-02, Argus VI ci A 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 i C 0.5 10.57 0.0198 0.9841 3.33 25.7 9	ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	±1σ	
i C 3.0 11.23 0.0077 4.059 2.73 66.1 89.3 100.0 35.418 0.02 Integrated age ± 1σ n=3 3.06 67.2 35.422 0.03 Plateau ± 1σ steps A-C n=3 MSWD=0.14 3.06 100.0 35.420 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 0.000 0.00 K\$098, smidine, 1=0.0019483±0.02%, IC=1.000371±0.0009714, NM-2978, Lab#=66432.29, Argus VI i A 0.2 34.02 0.0311 81.13 0.108 16.4 29.5 3.1 35.46 0.66 i B 0.2 10.64 0.0195 2.203 0.182 2.62 9.39 8.4 35.27 0.15 i C 3.0 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.529 0.01 Integrated age ± 1σ n=3 MSWD=0.97 3.48 47.2 35.513 0.020 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 34.663 1.03 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.23 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 0.000 0.000 KS 110, Orthodese, 1=0.019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66432-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.12 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 i C 0.6 17.59 0.1093 2.46.7 1.71 4.7 55.6 100.0 34.561 0.08 Integrated age ± 1σ n=3 4.05 4.3 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.761 0.08 i C 0.6 17.59 0.1093 2.64.5 1.71 4.7 55.6 100.0 34.561 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1094 0.294, IC=0.975058±0.00797, NM-297B, Lab#=66435-2, Argus VI i A 0.4 17.76 0.0224 1.686 1.30 2.40 9.53 4.7		(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)	
i C 3.0 11.23 0.0077 4.059 2.73 66.1 89.3 100.0 35.418 0.02 Integrated age ± 1σ n=3 3.06 67.2 35.422 0.03 Plateau ± 1σ steps A-C n=3 MSWD=0.14 3.06 100.0 35.420 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 0.000 0.00 K\$098, smidine, 1=0.0019483±0.02%, IC=1.000371±0.0009714, NM-2978, Lab#=66432.29, Argus VI i A 0.2 34.02 0.0311 81.13 0.108 16.4 29.5 3.1 35.46 0.66 i B 0.2 10.64 0.0195 2.203 0.182 2.62 9.39 8.4 35.27 0.15 i C 3.0 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.529 0.01 Integrated age ± 1σ n=3 MSWD=0.97 3.48 47.2 35.513 0.020 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 34.663 1.03 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.23 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ Ar/ ³⁶ Ar= 0.0±0.0 0.000 0.000 KS 110, Orthodese, 1=0.019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66432-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.12 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 i C 0.6 17.59 0.1093 2.46.7 1.71 4.7 55.6 100.0 34.561 0.08 Integrated age ± 1σ n=3 4.05 4.3 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.761 0.08 i C 0.6 17.59 0.1093 2.64.5 1.71 4.7 55.6 100.0 34.561 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1093 2.74.7 1.40 3.9 55.0 5.7.7 35.015 0.08 i C 0.6 17.59 0.1094 0.294, IC=0.975058±0.00797, NM-297B, Lab#=66435-2, Argus VI i A 0.4 17.76 0.0224 1.686 1.30 2.40 9.53 4.7												
Integrated age ± 1σ n=3 3.06 67.2 35.422 0.03 Plateau ± 1σ steps A-C n=3 MSWD=0.14 3.06 100.0 35.420 0.02 isochron±2σ no isochron n=0 MSWD=8.21 ⁴⁰ At/ ³⁶ Ar= 0.0±0.0 0.000 0.000 KS098, sandinc, i=0.0019483±0.02% kC=1.000371±0.0009714,NM-297B, Lab#=66432-29, Argus VI i 3.10 3.64 2.62 9.3 8.4 3.5.27 0.01 i C 3.0 10.64 0.0195 2.203 0.182 2.62 9.3 8.4 3.5.27 0.01 i C 3.0 10.64 0.0096 1.937 3.48 47.2 35.513 0.02 Plateau ± 1σ steps A-C n=3 MSWD=0.97 3.48 47.2 35.526 0.02 isochron±2σ no isochron n=0 MSWD=4.21 ⁴⁰ At/ ³⁶ Ar= 0.0±0.0 34.663 0.40 i A 0.2 127.4 0.025k 16.54 0.164 21.7 6.9 7.7 <td></td> <td>0.14</td>											0.14	
Plateau ± lσ steps A-C n=3 MSWD=0.14 3.06 100.0 35.420 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 4^{0} Ar/ 56 Ar= 0.0±0.0 0.000 0.000 KS 098, Sanidine, J=0.0019483±0.02%, IC=1.000371±0.0009714, NM-297B, Lab#=66432-29, Argus VI i A 0.2 34.02 0.0311 81.13 0.108 16.4 29.5 3.1 35.46 0.66 i D<2 10.64 0.0195 2.203 0.182 26.2 93.9 8.4 35.27 0.11 i C 3.04 47.2 35.513 0.00 35.526 0.02 Plateau ± 1σ steps A-C n=3 MSWD=0.97 3.48 47.2 3.55.13 0.00 Isochron±2σ no isochron n=0 MSWD=8.21 4^{0} Ar/ 56 Ar= 0.0±0.0 0.000 0.000 Isochron±2σ no isochron n=0 MSWD=8.21 4^{0} Ar/ 56 Ar= 0.0±0.0 3.463 0.44 I A 0.4 <td>i C</td> <td>3.0</td> <td>11.23</td> <td>0.0077</td> <td>4.059</td> <td></td> <td></td> <td>89.3</td> <td>100.0</td> <td>35.418</td> <td>0.028</td>	i C	3.0	11.23	0.0077	4.059			89.3	100.0	35.418	0.028	
Isochron±2σ no isochron n=0 MSWD=8.21 40 Ar/ ³⁶ Ar= 0.0±0.0 0.000 0.000 KS 098, samidine, 1=0.019483±0.02%, IC=1.000371±0.0009714, NM:297B, Lab#=66432.29, Argus VI i A 0.2 34.02 0.0311 81.13 0.108 16.4 29.5 3.1 35.46 0.66 i B 0.2 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.529 0.012 Integrated age ± 1σ n=3 3.48 47.2 35.513 0.020 Isochron±2σ no isochron n=0 MSWD=0.97 3.48 47.2 35.526 0.020 Isochron±2σ no isochron n=0 MSWD=8.21 40 Ar/ ³⁶ Ar= 0.0±0.0 0.0000 0.000 KS 098, sanidine, 1=0.0019483±0.02%, IC=1.000371±0.0009714, NM:297B, Lab#=66432-30, Argus VI Sisochron ±100009714, NM:297B, Lab#=66432-30, Argus VI KS 002 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3		Integrated	age ± 1σ	n=3		3.06	67.2			35.422	0.032	
KS 098, sanidine, =0.0019483±0.02%, IC=1.000371±0.0009714, NM-297B, Lab#=66432-29, Argus VI i A 0.2 34.02 0.0311 81.13 0.108 16.4 29.5 3.1 35.46 0.66 i B 0.2 10.64 0.0195 2.203 0.182 26.2 93.9 8.4 35.27 0.193 i C 3.0 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.52 0.01 Integrated age ± 1σ n=3 3.48 47.2 35.51 0.02 Isochron±2σ no isochron n=0 MSWD=0.97 3.48 47.2 0.0±.0 0.000 0.00 KS 098, sanidine, =0.0019483±0.02%, IC=1.000371±0.009714, NM-297B, Lab#=66432-30, Argus VI 46 1.3 1.48 0.21 1.47 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 6.9 7.7 34.95	Plate	eau ± 1σ	steps A-C	n=3	MSWD=0.14	3.06			100.0	35.420	0.028	
i A 0.2 34.02 0.0311 81.13 0.108 16.4 29.5 3.1 35.46 0.60 i B 0.2 10.64 0.0195 2.203 0.182 26.2 93.9 8.4 35.27 0.11 i C 3.0 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.529 0.01 Integrated age ± 1σ n=3 3.48 47.2 35.513 0.02 Plateau ± 1σ steps A-C n=3 MSWD=0.97 3.48 100.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ${}^{40}Ar^{36}Ar^{=}$ 0.0±0.0 0.000 0.000 KS 098, Sanidine, F=0.0019483±0.02%, IC=1.000371±0.0009714, NM-297B, Lab#=66432-30, Argus VI Ki A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 ${}^{40}Ar^{36}Ar^{=}$ 0.0±0.0 0.000 0.000 KS 110, Orthoclase, J=0.001950±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.12 i C 0.6 17.59 0.1093 2.6.45 1.71 4.7 55.6 100.0 34.751 0.08 Integrated age ± 1σ n=3 4.05 4.3 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.795 0.14 Isochron±2σ no isochron n=0 MSWD=8.21 ${}^{40}Ar^{36}Ar^{=}$ 0.0±0.0 0.00 0.00 KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-02, Argus VI K D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304	Isoch	ron±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.000	0.000	
i A 0.2 34.02 0.0311 81.13 0.108 16.4 29.5 3.1 35.46 0.60 i B 0.2 10.64 0.0195 2.203 0.182 26.2 93.9 8.4 35.27 0.11 i C 3.0 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.529 0.01 Integrated age ± 1σ n=3 3.48 47.2 35.513 0.02 Plateau ± 1σ steps A-C n=3 MSWD=0.97 3.48 100.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ${}^{40}Ar^{36}Ar^{=}$ 0.0±0.0 0.000 0.000 KS 098, Sanidine, F=0.0019483±0.02%, IC=1.000371±0.0009714, NM-297B, Lab#=66432-30, Argus VI Ki A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 ${}^{40}Ar^{36}Ar^{=}$ 0.0±0.0 0.000 0.000 KS 110, Orthoclase, J=0.001950±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.12 i C 0.6 17.59 0.1093 2.6.45 1.71 4.7 55.6 100.0 34.751 0.08 Integrated age ± 1σ n=3 4.05 4.3 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.795 0.14 Isochron±2σ no isochron n=0 MSWD=8.21 ${}^{40}Ar^{36}Ar^{=}$ 0.0±0.0 0.00 0.00 KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-02, Argus VI K D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 K I D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 K I D 0.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304		KS)98, Sanidine, J=	=0.0019483±0	.02%, IC=1.000371	±0.0009714, NM	I-297B, Lab#=6	6432-29,	Argus VI			
i B 0.2 10.64 0.0195 2.203 0.182 26.2 93.9 8.4 35.27 0.19 i C 3.0 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.529 0.01 Integrated age ± 1σ n=3 3.48 47.2 35.51 0.02 Flateau ± 1σ steps A-C n=3 MSWD=0.97 3.48 10.00 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 ${}^{40}Ar^{36}Ar=$ 0.0±0.0 0.000 0.00 KS098, Sanidine, J=0.0019483+0.02%, IC=1.000371±0.0009714, NM-297B, Lab#=66432-30, Argus VI Ci A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 ${}^{40}Ar^{36}Ar=$ 0.0±0.0 0.000 0.00 COMPARIANCE COMPARIANCE	i A									35.46	0.61	
i C 3.0 10.64 0.0096 1.937 3.19 53.0 94.6 100.0 35.529 0.01 Integrated age $\pm 1\sigma$ n=3 3.48 47.2 35.513 0.02 Plateau $\pm 1\sigma$ steps A-C n=3 MSWD=0.97 3.48 100.0 35.526 0.02 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $^{40}Ar^{36}Ar=$ 0.0 ± 0.0 0.000 0.00 KS098, samidine, $\pm 0.0019483\pm 0.02\%$, IC=1.000371\pm 0.0009714, NM-297B, Lab#=66432-30, Argus VI Ki A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age $\pm 1\sigma$ n=3 3.63 58.1 34.485 0.05 Plateau $\pm 1\sigma$ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $^{40}Ar^{36}Ar=$ 0.0 ± 0.0 0.000 0.00 KS110, Orthoclase, $\pm 0.019503\pm 0.02\%$, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.12 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.088 i C 0.6 17.59 0.1093 26.45 1.71 4.7 55.6 100.0 34.561 0.088 Integrated age $\pm 1\sigma$ n=3 4.05 4.3 34.774 0.05 Plateau $\pm 1\sigma$ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $^{40}Ar^{36}Ar=$ 0.0 ± 0.0 0.00 0.00 KS110, Orthoclase, $\mu = 0.019503\pm 0.02\%$, IC=0.9975058\pm 0.0007907, NM-297B, Lab#=66435-02, Argus VI Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 Ki E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Ki E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Ki F 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.82 0.0190 1.688 6.31 26.2 95.9 97.2 71.5 36.304 0.03 I 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.00 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 71.5 36.304 0.03 I 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.00 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 10											0.19	
Integrated age ± 1σ n=3 3.48 47.2 35.513 0.02 Plateau ± 1σ steps A-C n=3 MSWD=0.97 3.48 100.0 35.513 0.02 Isochron±2σ no isochron n=0 MSWD=0.97 3.48 4.00.0 0.0±0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 <th col<="" td=""><td>i C</td><td></td><td></td><td></td><td></td><td></td><td>53.0</td><td></td><td></td><td></td><td>0.018</td></th>	<td>i C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>53.0</td> <td></td> <td></td> <td></td> <td>0.018</td>	i C						53.0				0.018
Plateau ± 1σ steps A-C n=3 MSWD=0.97 3.48 100.0 35.526 0.02 Isochron±2σ no isochron n=0 MSWD=8.21 40Ar/ ³⁶ Ar= 0.0±0.0 0.000 0.000 KS 098, Smidine, J=0.0019483±0.02%, IC=1.000371±0.0009714, NM-297B, Lab#=66432-30, Argus VI Ki A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=32.02% 160.7070, NM-297B, Lab#=66435-01, Argus VI 1 i A 0.4 17.76 0.122.3 26.79 0.942 4.2 55.0 57		Integrated	age $\pm 1\sigma$								0.028	
KS098, Sanidine, J=0.0019483±0.02%, IC=1.000371±0.0009714, NM-297B, Lab#=66432-30, Argus VI Si A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 16 n=3 3.63 58.1 34.485 0.05 Plateau ± 16 steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 4^{40} Ar/ 3^{36} Ar= 0.0±0.0 0.000 0.00 KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 5.5 23.3 34.81 0.12 i A 0.4 1.76 0.1203		-	-		MSWD=0.97				100.0		0.020	
Ki A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 40 Ar/ ³⁶ Ar= 0.0±0.0 0.000 0.000 KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 25.5 23.3 34.81 0.17 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 Integrated age ± 1σ n=3	Isoch	nron±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0	±0.0	0.000	0.000	
Ki A 0.2 127.4 0.0280 403.6 0.114 18.2 6.4 3.1 28.6 1.3 i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.22 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age ± 1σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 40 Ar/ ³⁶ Ar= 0.0±0.0 0.000 0.000 KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 25.5 23.3 34.81 0.17 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 Integrated age ± 1σ n=3												
i B 0.2 14.77 0.0235 16.54 0.164 21.7 66.9 7.7 34.90 0.23 i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age $\pm 1\sigma$ n=3 3.63 58.1 34.485 0.05 Plateau $\pm 1\sigma$ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $^{40}Ar/^{36}Ar=$ 0.0 ± 0.0 0.000 0.00 KS110, Orthoclase, J=0.0019503 $\pm 0.02\%$, IC=0.9975058 ± 0.0007907 , NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.17 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.008 Integrated age $\pm 1\sigma$ n=3 4.05 4.3 34.77 0.05 Plateau $\pm 1\sigma$ steps A-C n=3 MSWD=6.93 4.052 100.0 34.761 0.08 Integrated age $\pm 1\sigma$ n=3 4.05 4.3 34.77 0.05 Plateau $\pm 1\sigma$ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $^{40}Ar/^{36}Ar=$ 0.0 ± 0.0 0.0 0.0 0.00 KS110, Orthoclase, J=0.0019503 $\pm 0.02\%$, IC=0.9975058 ± 0.0007907 , NM-297B, Lab#=66435-02, Argus VI Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 Ki E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Ki F 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.57 0.0198 0.9891 3.36 25.8 97.2 87.2 36.299 0.02 J 0.8 10.57 0.0198 0.9891 3.36 25.9 97.2 71.5 36.304 0.03 I 0.8 10.57 0.0198 0.9891 3.36 25.9 97.2 71.5 36.304 0.03 I 0.8 10.57 0.0198 0.9891 3.36 25.9 97.2 71.5 36.304 0.03 I 0.8 10.57 0.0198 0.9891 3.36 25.8 97.2 87.2 36.299 0.02 J 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ n=8 34.1 25.7 36.697 0.01 Plateau $\pm 1\sigma$ steps G-K n=5 MSWD=13.26 19.862	<i>7</i> ••••									29.6	1.2	
i C 3.0 14.08 0.0074 14.43 3.35 68.8 69.7 100.0 34.663 0.04 Integrated age $\pm 1\sigma$ n=3 3.63 58.1 34.485 0.05 Plateau $\pm 1\sigma$ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $4^{0}Ar^{36}Ar=$ 0.0 ± 0.0 0.000 0.00 KS110, Orthoclase, I=0.0019503 $\pm 0.02\%$, IC=0.9975058 ± 0.0007907 , NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.12 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 i C 0.6 17.59 0.1093 26.45 1.71 4.7 55.6 100.0 34.561 0.08 Integrated age $\pm 1\sigma$ n=3 4.05 4.3 34.774 0.05 Plateau $\pm 1\sigma$ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $4^{0}Ar^{36}Ar=$ 0.0 ± 0.0 0.0 0.00 KS110, Orthoclase, I=0.0019503 $\pm 0.02\%$, IC=0.9975058 ± 0.0007907 , NM-297B, Lab#=66435-02, Argus VI Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.21 Ki E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Ki E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Ki F 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.57 0.0198 0.9991 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.02 H 0.7 10.57 0.0198 0.9941 5.36 25.8 97.2 87.2 36.299 0.02 J 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ n=8 34.1 25.7 36.697 0.01 Plateau $\pm 1\sigma$ steps G-K n=5 MSWD=13.26 19.862 58.3 36.32 0.05												
Integrated age ± 1 σ n=3 3.63 58.1 34.485 0.05 Plateau ± 1 σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.485 0.04 Isochron±2 σ no isochron n=0 MSWD=0.71 3.513 96.9 34.470 0.04 0.0400 0.000 0.000 KS110 , Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.0 57.0 50.018 i B 0.5 18.02 0.1093 26.45 1.71 4.75 66435-01, Argus VI S Integrated age ± 1 σ n=3 4.05 4.3 4.05 4.05 <												
Plateau ± 1σ steps B-C n=2 MSWD=0.71 3.513 96.9 34.67 0.04 Isochron±2σ no isochron n=0 MSWD=8.21 4^{0} Art ³⁶ Ar= 0.0±0.0 0.000 0.000 KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.12 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 Integrated age ± 1σ n=3 4.05 4.3 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron±2σ no isochron n=0 MSWD=8.21 4^{0} Art ³⁶ Ar= 0.0±0.0 0.0 0.0 Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.27 Ki D 0.4 10.62 0.0161 1.859 0.297 31.7					14.43			69.7	100.0			
Isochron±2σ no isochron n=0 MSWD=8.21 40 Ar/ 36 Ar= 0.0±0.0 0.000 0.000 KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.17 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 i C 0.6 17.59 0.1093 26.45 1.71 4.7 55.6 100.0 34.561 0.08 Integrated age ± 1σ n=3 4.05 4.3 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron±2σ no isochron n=0 MSWD=8.21 40 Ar/ 36 Ar= 0.0±0.0 0.0 0.0 Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.21 Ki D 0.4 10.62 0.0161 1.859<		-	-		MOUD 0.71		58.1		06.0			
KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-01, Argus VI i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.11 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 i C 0.6 17.59 0.1093 26.45 1.71 4.7 55.6 100.0 34.561 0.08 Integrated age ± 1σ n=3 4.05 4.3 34.774 0.05 Plateau ± 1σ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron±2σ no isochron n=0 MSWD=8.21 40 Ar/ ³⁶ Ar= 0.0±0.0 0.0 0.0 KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-02, Argus VI Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.27 Ki D 0.4 10.62			-			3.513	40 A r/36 A r	0.0-				
i A 0.4 17.76 0.1223 26.79 0.942 4.2 55.5 23.3 34.81 0.12 i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 i C 0.6 17.59 0.1093 26.45 1.71 4.7 55.6 100.0 34.561 0.08 Integrated age $\pm 1\sigma$ n=3 4.05 4.3 34.774 0.05 Plateau $\pm 1\sigma$ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $^{40}Ar^{36}Ar=$ 0.0 ± 0.0 0.0 0.0 KS 110, Orthoclase, $\pm 0.0019503\pm 0.02\%$, IC=0.997505 ± 0.007907 , NM-297B, Lab#=66435-02, Argus VI Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.21 Ki E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Ki F 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.022 H 0.7 10.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.57 0.0198 0.9941 5.36 25.8 97.2 87.2 36.299 0.022 J 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ n=8 34.1 25.7 36.697 0.01 Plateau $\pm 1\sigma$ steps G-K n=5 MSWD=13.26 19.862 58 0.01	isoen	11011-20	no isociron	по	WIGWD 0.21		211/211	0.0-	10.0	0.000	0.000	
i B 0.5 18.02 0.1303 27.47 1.40 3.9 55.0 57.7 35.015 0.08 i C 0.6 17.59 0.1093 26.45 1.71 4.7 55.6 100.0 34.561 0.08 Integrated age $\pm 1\sigma$ n=3 4.05 4.3 34.774 0.05 Plateau $\pm 1\sigma$ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $^{40}Ar/^{36}Ar=$ 0.0 ± 0.0 0.0 0.0 KS 110, Orthoclase, $\pm 0.0019503\pm 0.02\%$, IC=0.997505 ± 0.007907 , NM-297B, Lab#=66435-02, Argus VI Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.21 Ki E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Ki F 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.022 H 0.7 10.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.57 0.0198 0.9941 5.36 25.8 97.2 87.2 36.299 0.022 J 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ n=8 34.1 25.7 36.697 0.01 Plateau $\pm 1\sigma$ steps G-K n=5 MSWD=13.26 19.862 58 36.25 58.3 36.32 0.05		KS1	10, Orthoclase, J=	=0.0019503±0).02%, IC=0.997505	58±0.0007907, N	M-297B, Lab#=	=66435-0	l, Argus V	[
i C 0.6 17.59 0.1093 26.45 1.71 4.7 55.6 100.0 34.561 0.08 Integrated age $\pm 1\sigma$ n=3 4.05 4.3 34.774 0.05 Plateau $\pm 1\sigma$ steps A-C n=3 MSWD=6.93 4.052 100.0 34.79 0.14 Isochron $\pm 2\sigma$ no isochron n=0 MSWD=8.21 $^{40}Ar^{36}Ar$ = 0.0 \pm 0.0 0.0 0.0 KS 110, Orthoclase, $\pm 0.0019503\pm 0.02\%$, IC=0.9975058 ± 0.0007907 , NM-297B, Lab#=66435-02, Argus VI Ki D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 Ki E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Ki F 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.57 0.0198 0.9891 3.83 25.7 97.2 87.2 36.299 0.02 J 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ n=8 34.1 25.7 58.3 36.32 0.05			17.76	0.1223	26.79	0.942	4.2		23.3	34.81	0.12	
Integrated age $\pm 1\sigma$ n=34.054.334.7740.05Plateau $\pm 1\sigma$ steps A-Cn=3MSWD=6.934.054.334.7740.05Plateau $\pm 1\sigma$ steps A-Cn=34.054.334.7740.05Plateau $\pm 1\sigma$ steps A-Cn=34.054.054.334.7740.05Plateau $\pm 1\sigma$ steps G-Kn=3MSWD=6.934.054.054.054.054.054.054.05Isochron $\pm 2\sigma$ no isochronn=0MSWD=6.934.054.054.07Isochron $\pm 2\sigma$ no isochronn=0MSWD=7.297BLab#=66435-02, Argus VIKiD0.041.0620.01150.0271.079.05Ki0.41.0620.0119503 $\pm 0.02\%$, IC=0.9975058 ± 0.0007907 , NM-297B, Lab#=66435-02, Argus VIKiD0.101960.29731.7 <th c<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.086</td></th>	<td></td> <td>0.086</td>											0.086
Plate au $\pm 1\sigma$ steps A-Cn=3MSWD=6.934.052100.034.790.14Isochron $\pm 2\sigma$ no isochronn=0MSWD=8.21 40 Ar/ 36 Ar=0.0 \pm 0.00.00.0KS 110, Orthoclase, J=0.0019503 \pm 0.02%, IC=0.9975058 \pm 0.0007907, NM-297B, Lab#=66435-02, Argus VIKiD0.410.620.01611.8590.29731.794.80.935.590.21KiD0.410.620.01611.8590.29731.794.80.935.5810.07KiE0.510.570.02121.6861.3024.095.34.737.4330.01G0.710.820.01901.6886.3126.895.460.236.4560.02H0.710.570.01980.99813.8325.797.271.536.3040.03I0.810.630.01941.3632.3126.296.293.936.1260.04K0.910.540.01971.0022.0625.997.2100.036.1830.04Integrated age $\pm 1\sigma$ n=834.125.736.6970.01				0.1093	26.45	1.71		55.6	100.0	34.561	0.086	
Isochron $\pm 2\sigma$ no isochronn=0M SWD=8.21 40 Ar/ 36 Ar= 0.0 ± 0.0 0.0 0.0 KS 110, Orthoclase, J=0.0019503 $\pm 0.02\%$, IC=0.9975058 ± 0.0007907 , NM-297B, Lab#=66435-02, Argus VIKiD 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.212 KiE 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 KiF 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 10.00 36.183 0.04 Integrated age $\pm 1\sigma$ $n=8$ 34.1 25.7 58.3 36.32 0.05		Integrated	age ± 1σ	n=3		4.05	4.3			34.774	0.055	
KS 110, Orthoclase, J=0.0019503±0.02%, IC=0.9975058±0.0007907, NM-297B, Lab#=66435-02, Argus VI Xi D 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.22 Xi E 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 Xi F 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ n=8 34.1 25.7 36.697 0.01	Plate	eau ± 1σ	steps A-C	n=3	M SWD=6.93	4.052			100.0	34.79	0.144	
XiD 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.23 XiE 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 XiF 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ $n=8$ 34.1 25.7 36.304 0.01 Plateau $\pm 1\sigma$ steps G-K $n=5$ MSWD=13.26 19.862 58.3 36.32 0.05	Isoch	ron±2σ	no isochron	n=0	MSWD=8.21		$^{40}Ar/^{36}Ar =$	0.0=	±0.0	0.0	0.0	
XiD 0.4 10.62 0.0161 1.859 0.297 31.7 94.8 0.9 35.59 0.23 XiE 0.5 10.57 0.0212 1.686 1.30 24.0 95.3 4.7 35.581 0.07 XiF 0.6 11.06 0.0204 1.561 12.6 25.0 95.8 41.7 37.433 0.01 G 0.7 10.82 0.0190 1.688 6.31 26.8 95.4 60.2 36.456 0.02 H 0.7 10.57 0.0198 0.9891 3.83 25.7 97.2 71.5 36.304 0.03 I 0.8 10.63 0.0194 1.363 2.31 26.2 96.2 93.9 36.126 0.04 K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ $n=8$ 34.1 25.7 36.304 0.01 Plateau $\pm 1\sigma$ steps G-K $n=5$ MSWD=13.26 19.862 58.3 36.32 0.05		KS1	10, Orthoclase, J	=0.0019503±0).02%, IC=0.997505	58±0.0007907, N	M-297B, Lab#=	=66435-02	2, Argus V	[
XiE0.510.570.02121.6861.3024.095.34.735.5810.07KiF0.611.060.02041.56112.625.095.841.737.4330.01G0.710.820.01901.6886.3126.895.460.236.4560.02H0.710.570.01980.98913.8325.797.271.536.3040.03I0.810.630.01941.3632.3126.296.293.936.1260.04K0.910.540.01971.0022.0625.997.2100.036.1830.04Integrated age $\pm 1\sigma$ n=834.125.758.336.320.05	Ki D										0.21	
KiF0.611.060.02041.56112.625.095.841.737.4330.01G0.710.820.01901.6886.3126.895.460.236.4560.02H0.710.570.01980.98913.8325.797.271.536.3040.03I0.810.570.01980.99415.3625.897.287.236.2990.02J0.810.630.01941.3632.3126.296.293.936.1260.04K0.910.540.01971.0022.0625.997.2100.036.1830.04Integrated age $\pm 1\sigma$ n=834.125.736.6970.01Plateau $\pm 1\sigma$ steps G-Kn=5MSWD=13.2619.86258.336.320.05											0.070	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.018	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.02	
I0.810.570.01980.99415.3625.897.287.236.2990.02J0.810.630.01941.3632.3126.296.293.936.1260.04K0.910.540.01971.0022.0625.997.2100.036.1830.04Integrated age ± 1σn=834.125.758.336.320.05Plateau ± 1σsteps G-Kn=5MSWD=13.2619.86258.336.320.05											0.03	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											0.02	
K 0.9 10.54 0.0197 1.002 2.06 25.9 97.2 100.0 36.183 0.04 Integrated age $\pm 1\sigma$ n=8 34.1 25.7 36.697 0.01 Plateau $\pm 1\sigma$ steps G-K n=5 MSWD=13.26 19.862 58.3 36.32 0.05											0.040	
Integrated age $\pm 1\sigma$ n=8 34.1 25.7 36.697 0.01 Plateau $\pm 1\sigma$ steps G-K n=5 MSWD=13.26 19.862 58.3 36.32 0.05											0.04	
Plateau $\pm 1\sigma$ steps G-K n=5 M SWD=13.26 19.862 58.3 36.32 0.05											0.014	
		0	6		MSWD=13.26				58 3			
			steps G-K	n=5	MSWD=13.20 MSWD=8.21	17.002	$^{40}Ar/^{36}Ar =$	2650		36.02	0.05	

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

ID	Power	⁴⁰ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	³⁹ Ar _K	K/Ca	⁴⁰ Ar*	³⁹ Ar	Age	$\pm 1\sigma$
	(Watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(%)	(Ma)	(Ma)

Table C2. ⁴⁰Ar/³⁹Ar analytical data, single crystal step heating results.

Notes:	
Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions.	
Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties.	
Integrated age calculated by summing isotopic measurements of all steps.	
Integrated age error calculated by quadratically combining errors of isotopic measurements of all steps.	
Plateau age is inverse-variance-weighted mean of selected steps.	
Plate au age error is inverse-variance-weighted mean error (Taylor, 1982) times root MSWD where MSWD>1.	
Plateau error is weighted error of Taylor (1982).	
Decay constants and isotopic abundances after Steiger and Jäger (1977).	
# symbol preceding sample ID denotes analyses excluded from plateau age calculations.	
Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard at 28.201 Ma	
Decay Constant (LambdaK (total)) = 5.463e-10/a	
Correction factors:	
$({}^{39}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}} = 0.0007593 \pm 0.000008$	
$({}^{36}\mathrm{Ar}/{}^{37}\mathrm{Ar})_{\mathrm{Ca}} = 0.0002772 \pm 0.0000010$	
$({}^{38}\mathrm{Ar}){}^{39}\mathrm{Ar})_{\mathrm{K}} = 0.01271$	
$({}^{40}\mathrm{Ar}/{}^{39}\mathrm{Ar})_{\mathrm{K}} = 0.007204 \pm 0.00046$	

ID	Power	40 Ar/ 39 Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}\mathrm{Ar_K}$	K/Ca	$^{40}\text{Ar}^*$	Age	$\pm 1\sigma$
	(watts)			(x 10 ⁻³)	(x 10 ⁻¹⁵ mol)		(%)	(Ma)	(Ma)
		, .			75058±0.0007907,1				
06	3	73.19	5.128	217.4	0.012	0.099	12.8	33.2	3.8
09	3	38.14	4.965	98.66	0.014	0.10	24.6	33.3	2.8
04	3	14.37	4.811	16.87	0.153	0.11	68.0	34.65	0.28
02	3	17.90	4.050	28.45	0.054	0.13	54.9	34.79	0.76
08	3	18.57	0.0658	29.28	0.032	7.8	53.4	35.0	1.1
03	3	18.63	3.968	30.64	0.096	0.13	53.1	35.06	0.46
05	3	13.11	4.376	12.00	0.055	0.12	75.7	35.13	0.66
07	3	15.46	6.121	17.96	0.011	0.083	68.9	37.7	3.0
	Mean ag	e ± 1σ	n=8	MSW	/D=0.33	1.1 ± 5.4		34.81	0.21
04	3	10.45	0.0079	4.772	29.296	64.9	86.5	31.923	0.01
	KS0	98, Sanidine, J	=0.0019483±0	.02%, IC=0.997	5058±0.0007907, N	M-297B, Lab#=	66432, Argus	VI	
15	3	13.59	0.0164	12.95	6.222	31.0	71.8	34.487	0.02
14	3	16.04	0.0134	20.83	10.057	38.2	61.6	34.894	0.02
02	3	13.06	0.0102	10.67	10.109	50.0	75.9	34.986	0.02
13	3	13.08	0.0082	10.67	5.928	62.4	75.9	35.034	0.02
08	3	13.26	0.0109	11.27	9.259	47.0	74.9	35.049	0.02
11	3	12.24	0.0101	7.741	9.976	50.3	81.3	35.144	0.01
05	3	11.58	0.0091	5.317	5.841	55.9	86.4	35.326	0.02
12	3	11.70	0.0087	5.711	9.600	58.8	85.6	35.355	0.01
10	3	12.32	0.0110	7.804	3.297	46.5	81.3	35.357	0.03
06	3	11.38	0.0096	4.585	4.233	53.0	88.1	35.391	0.02
	3	12.31	0.0109	7.712	10.175	46.9	81.5	35.423	0.01
			0.0089	9.596	6.182	57.2	78.0	35.473	0.02
01	3	12.89			0.102				
01 03	3	12.89 11.55			8.881	51.0	87.0	35.477	0.01
01	3 3 3	12.89 11.55 11.67	0.0100 0.0138	5.082 5.438	8.881 11.933	51.0 37.1	87.0 86.2	35.477 35.505	0.01 0.01

Table C3. ⁴⁰Ar/³⁹Ar analytical data, total fusion results.

Notes:

Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions. Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties.

Mean age is weighted mean age of Taylor (1982). Mean age error is weighted error

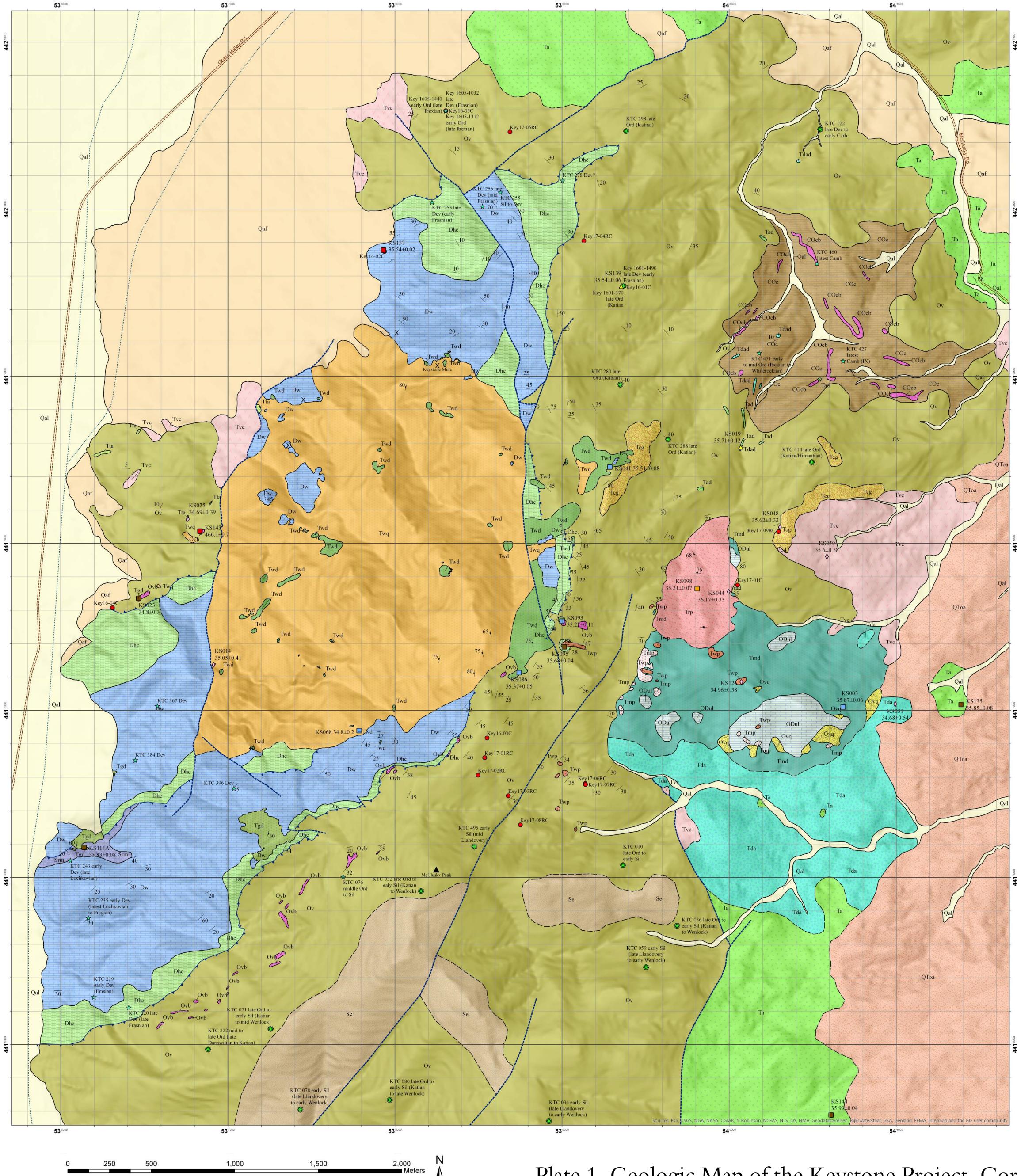
of the mean (Taylor, 1982), multiplied by the root of the MSWD where MSWD>1, and also

incorporates uncertainty in J factors and irradiation correction uncertainties.

Decay constants and isotopic abundances after Steiger and Jäger (1977).

symbol preceding sample ID denotes analyses excluded from mean age calculations.

Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard at 28.201 Ma


Decay Constant (LambdaK (total)) = 5.543e-10/a Correction factors:

 $({}^{39}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}} = 0.0007593 \pm 0.00008$

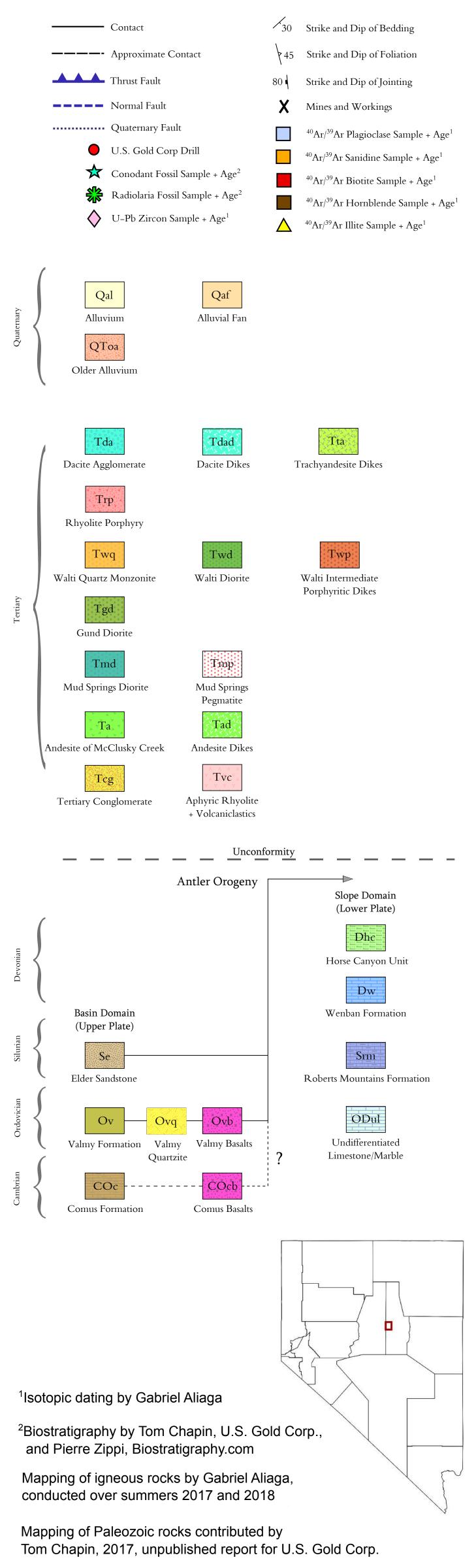
 $({}^{36}\text{Ar}/{}^{37}\text{Ar})_{\text{Ca}} = 0.0002772 \pm 0.0000010$

 $({}^{38}\text{Ar}/{}^{39}\text{Ar})_{\rm K} = 0.01271$

 $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\rm K} = 0.007204 \pm 0.00046$

2,000 0 500 1,000 Scale 1:10,000 Datum UTM NAD27 Zone 11 Contour Interval 200 feet

Feet


4,000

3,000

Plate 1. Geologic Map of the Keystone Project, Cortez Trend, Eureka Co., Nevada By

Gabriel E. Aliaga 2018

Explanation

